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Eskişehir, TR-26470, Turkey

Abstract. An offline feature selection and evaluation mechanism is used
in order to develop a robust visual tracking scheme for sea-surface and
aerial targets. The covariance descriptors, known to constitute an effi-
cient signature set in object detection and classification problems, are
used in the feature extraction phase of the proposed scheme. The per-
formance of feature sets are compared using support vector machines,
and those resulting in the highest detection performance are used in the
covariance based tracker. The tracking performance is evaluated in dif-
ferent scenarios using different performance measures with respect to
ground truth target positions. The proposed tracking scheme is observed
to track sea-surface and aerial targets with plausible accuracies, and the
results show that gradient-based features, together with the pixel locations
and intensity values, provide robust target tracking in both surveillance
scenarios. The performance of the proposed tracking strategy is also
compared with some well-known trackers including correlation, Kanade–
Lucas–Tomasi feature, and scale invariant feature transform-based track-
ers. Experimental results and observations show that the proposed target
tracking scheme outperforms other trackers in both air and sea surveil-
lance scenarios. C© 2011 Society of Photo-Optical Instrumentation Engineers (SPIE).
[DOI: 10.1117/1.3640826]
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1 Introduction
Extraction and selection of appropriate features for target
representation are the key steps in most target detection and
tracking and behavior analysis applications.1 Features may
be color, edges, displacement vectors in optic flow-based
approaches, textures, and their combinations depending on
the target model (appearance and motion) and imaging sys-
tem. The features extracted from the target locations should
have several properties including high differentiation prop-
erty, scale and rotation invariance, robustness to noise, and
partial invariance to affine transformation, intensity changes,
and occlusion. Another important issue is the real time re-
quirement where proper features decrease the computational
cost of the detection and tracking algorithm. A comprehen-
sive survey about object tracking is made in Refs. 1 and 2.

In the literature, raw pixel intensities or first or higher or-
der statistics extracted from these values are commonly used
in different target tracking problems.3–5 Kernel-based meth-
ods are widely used in target tracking,6–9 where histogram
features extracted from raw pixel intensities are utilized. Fea-
tures obtained by Scale invariant feature transform (SIFT)
(Ref. 10) are independent of scale, rotation, and intensity
change and robust against affine transformation. They are
widely used in applications for target detection,11 tracking,12

classification,13 image matching,14 and constructing mo-
saic images.15 When compared to other point-of-interest
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detectors such as Moravec16 and Harris,17 SIFT features
are more robust to background clutter, noise, and occlusion.
Harris corner detection is not applicable in most cases where
the target changes its orientation rapidly or the camera
angle changes in the subsequent frames in surveillance
systems because it is not invariant to scale. Unfortunately,
despite the distinctive properties of SIFT, the feature extrac-
tion process is time consuming and the method is hardly used
in real time applications. Correlation filters for the target
tracking problem are proposed in Refs. 18–20. Covariance
descriptors with low computational load are defined in
Ref. 21, and these descriptors are successfully used in
applications such as indoor and outdoor target tracking.22

In this study, an offline feature selection and evaluation
mechanism is developed for robust tracking of sea-surface
and aerial targets in visual band videos. The covariance
descriptors,21 which cover both spatial and statistical infor-
mation and their correlations, are used as features. Image
features used in the computation of the covariance matrix
are tested offline using a database of target and background
images for different scenarios using support vector machines
(SVMs).23 Scenarios are defined for the different sea and sky
backgrounds and sea-surface and aerial targets. The major
contribution in this work is the development of an offline
feature extraction and cross verification scheme for robust
tracking of sea-surface and aerial targets.

Eventually, a complete solution is proposed as a
surveillance system using a visual band camera mounted
on land or sea platforms to track symmetric and
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asymmetric targets which gains importance in military and
security applications.24–32 To the best of our knowledge,
covariance-based trackers were not previously used for track-
ing of sea-surface and aerial targets in the literature, hence
the proposed method imposes a novel attempt to the prob-
lem. Moreover, an offline feature selection mechanism for
robust target tracking has not been visited in the literature.
An adaptive appearance-based update strategy is developed
by considering the motion characteristics of the targets, and,
in order to test the usefulness of the proposed method, the
performance of the proposed tracking system is evaluated us-
ing different performance measures in field trials considering
scale, rotation, and partial occlusion cases.

The paper is organized as follows: In Sec. 2, local co-
variance descriptors are briefly described. Feature selection
and two-class (target and background) differentiation using
SVMs are explained in Sec. 3. In Sec. 4, proposed target
tracking framework is given in detail. Experimental work
and results with a comparison using the ground truth data
with different performance measures are provided in Sec. 5.
In Sec. 5, the performance of the proposed system is com-
pared with correlation, Kanade–Lucas–Tomasi (KLT) fea-
ture, and SIFT-based trackers. Concluding remarks are made
and direction for future research is provided in Sec. 6.

2 Local Covariance Descriptors
In this study, local covariance descriptors are used for target
tracking purposes. They are chosen due to their low compu-
tational complexity and robustness to partial occlusion. They
also enable to add or remove features in a simple manner to
adapt the tracker for the different target types.

In the computation of the covariance matrix, the feature
matrices ( fi ; i = 1, 2, . . . , D) extracted from a W×H subre-
gion of an image are stacked to form W×H×D dimensional
feature tensor T (:, :, :) (Fig. 1). W and H are the width and
height of the template and D is the number of features ex-
tracted from the template. In the feature tensor, the elements
in each layer with the index (m, n) are sorted to construct the
feature vector (St ) [Eq. (1)]. In total, W×H feature vectors
(St ) are constructed

St = [ f1(m, n) f2(m, n) · · · fD(m, n)] , (1)

Fig. 1 The feature tensor T(:, :, :) formed by placing feature matrices
back to back.

where m = 1, 2, . . . , W , n = 1, 2, . . . , H , t = 1, 2, . . . , k,
and k = W×H .

Local covariance matrix, Mloc, is computed by using the
feature vectors at each index (m, n) as follows:

Mloc(p, q) = 1

k − 1

[
k∑

t=1

St (p)St (q) − 1

k

k∑
t=1

St (p)

×
k∑

t=1

St (q)

]
, (2)

where p, q = 1, 2, . . . , D.
In the classical formulation of the covariance matrix

[Eq. (2)], there are too many multiplication operations that
increase the computational cost. Therefore, the “integral
image” (Ref. 21) approach, known as a computationally
efficient method, is adopted for the computation of the co-
variance matrix. The integral image (ψ) can be expressed in
general as the accumulation of intensities (I ) in a selected
region. Considering the image shown in Fig. 2, the ψ image
for the selected region is computed as follows:

ψ(x ′, y′) =
∑
x<x ′

∑
y<y′

I (x, y). (3)

In Ref. 21, the local covariance descriptor for a given region
is computed by using the Eq. (4).

P(x ′, y′, p) =
∑
x<x ′

∑
y<y′

T (x, y, p)

Q(x ′, y′, p, q) =
∑
x<x ′

∑
y<y′

T (x, y, p)T (x, y, q)

Px ′,y′ = [P(x ′, y′, 1) · · · P(x ′, y′, D)]T ,

Qx ′,y′ =

⎛
⎜⎜⎝

Q(x ′, y′, 1, 1) . . . Q(x ′, y′, 1, D)

...
. . .

...

Q(x ′, y′, D, 1) · · · Q(x ′, y′, D, D)

⎞
⎟⎟⎠

Mloc(1,1 ; x ′,y′) = 1

k − 1

[
Qx ′,y′ − 1

k
Px ′,y′ PT

x ′,y′

]
. (4)

In this work, the local covariance descriptors are com-
puted for the two scenarios separately: sea and air surveil-
lance. Since the target and background characteristics of

Fig. 2 The illustration of a sample region used in the computation of
the integral image.
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the sea and air surveillance scenarios differ significantly,
different types of features are used in the computation of
the covariance descriptors for both surveillance scenarios.
Feature extraction and selection mechanism is explained
in Sec. 3.

3 Feature Extraction and Selection
The camera used in the study captures interlaced videos. Al-
though interlacing structures have important merits such as
reducing the signal bandwidth by a factor of 2, interlacing ar-
tifacts occur when there exists rapid camera movements and
vibrations. The elimination of interlacing artifacts is a crucial
task in appearance-based applications. Since the developed
tracker is intended to be used in real-time applications, a
fast and simple deinterlacing algorithm is needed. Therefore,
a “line doubling” type of approach is used, where the odd
numbered (even numbered) rows of each frame are taken
and the interpolation of two consecutive rows are placed be-
tween these rows. At the end, a reasonably deinterlaced video
frame at the same dimension with the original video frame
is obtained.

After deinterlacing, RGB to gray-scale conversion is
performed as a preprocessing step to generate covariance
descriptors. The gray-scale conversion is preferred since the
target color does not change significantly in sea and air
surveillance scenarios. The features extracted from the gray-
scale image in the region of interest (ROI) are listed below:

� image intensity (I )
� image horizontal position (x)
� image vertical position (y)
� first derivative of the image in the horizontal direction

(∂1,x = ∂ I/∂x)
� first derivative of the image in the vertical direction

(∂1,y = ∂ I/∂y)
� second derivative of the image in the horizontal direc-

tion (∂2,x = ∂2 I/∂x2)
� second derivative of the image in the vertical direction

(∂2,y = ∂2 I/∂y2)

� gradient magnitude (GM =
√

∂2
1,x + ∂2

1,y)

� gradient orientation (GO = tan−1(∂1,y/∂1,x )).

Features are extracted from the target and background im-
ages within a data set. The efficiency of these features on
target-background classification is observed using the SVM
classifier.23 SVM, developed by Vladimir Vapnik, is a su-
pervised machine learning method based on the statistical
learning theory. The method constructs a hyperplane or a set
of hyperplanes in a high dimensional space that can be used
in applications such as object, voice, and handwritten char-
acter recognition and text classification. SVM preprocesses
and represents the features in a higher dimensional space
where they may become linearly separable.

In a dataset (sea or air surveillance), the features or fea-
ture sets extracted from the target and background images
are mutually or in combination used to construct regional
covariance descriptors. The descriptors belonging to target
and background images are applied to the SVM classification
engine to separate target feature vectors from the background
feature vectors. In the classification process, C-support
vector classification (C-SVC) type of formulation of the

Fig. 3 The target images above sea-level.

SVM software package33 is used. The radial basis function
kernel [K (ωi , ω j ) = exp(−γ ‖ωi − ω j‖2), γ > 0, ωi and
ω j are feature vectors] is selected in the computation and
parameters are determined after cross validation. For the ex-
perimental dataset, the kernel parameter (γ ) and the penalty
parameter of the error term (C) are selected after a cross
validation process as 10,000 and 0.1, respectively.

Among the covariance descriptors, the features with
higher target-background classification accuracies are se-
lected as a candidate feature set and used in the target tracking
phase.

In the Secs. 3.1 and 3.2, the features providing the best
target-background classification accuracy for sea and air
surveillance are given and the procedure is explained for
both surveillance environments.

3.1 Feature Selection for Sea-Surface Targets
In order to observe the performance of different features
in sea-surface target-background classification, a two-class
dataset including the images of sea-surface targets and back-
ground is constructed. The dataset consists of 1000 images of
several sea-surface targets and 1000 background images cap-
tured with a visual band camera at different day times, places,
and scenarios. Sample images from the dataset are given for
target and background in Figs. 3 and 4, respectively. As seen
in Fig. 3, target images have also some portion of the back-
ground because we are interested not only in target texture
but also in target to background transitions, which provides
useful information. Five hundred target and 500 background
images are randomly selected and used in the training of the
SVM. The remaining 500 target and 500 background images
are used in the test of the SVM. This procedure is repeated 10
times and the average target-background classification rate
is computed.

The target-background classification performances of the
feature sets are given in Table 1. Although all possible combi-
nations of the features are used in target-background separa-
tion, several but representative ones are presented in Table 1
to preserve the readability of the results. The results indicate
that individual and combined utilization of features may sig-
nificantly alter the performance.34 As an example, although
the pixel positions are not discriminative features individu-
ally, higher classification performance is obtained when the
pixel positions are used together with the other types of fea-
tures. On the other hand, it can be said that the correlation
between the pixel positions and derivative-based features has

Fig. 4 The background images in sea surveillance.
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Table 1 SVM-based sea-surface target-background classification
accuracies for different feature sets. The candidate feature sets for
sea-surface target tracking tests are separated with a line in the ta-
ble. Although all possible combinations of the features are used in the
experiments, several but representative ones of them are presented
to preserve the readability of the results.

Feature set
Target-background

classification accuracy (%)

y 55.8

x 58.5

∂2,y 64.4

∂1,y 64.8

GO 67.8

∂1,x 72.7

∂2,x 73.8

I 85.8

I, x, y 95.4

I, x, y , GO 98.8

I, x, y , ∂1,x , ∂2,x , ∂1,y , ∂2,y , GM, GO 98.9

I, x, y , GM 99.1

I, x, y , ∂2,x , ∂2,y 99.2

I, x, y , GM, GO 99.5

I, x, y , ∂1,x , ∂1,y 99.7

I, x, y , ∂2,x , ∂2,y , GM 99.8

I, x, y , ∂1,x , ∂1,y , ∂2,x , ∂2,y 99.8

I, x, y , ∂1,x , ∂2,x , ∂1,y , ∂2,y , GM 99.8

more discriminative power. The results presented in Table 1
show that one cannot generalize a rule that the classification
performance increases by adding more features. Therefore, in
order to examine the feature characteristics of the sea-surface
targets in the tracking scenarios, the feature sets providing
over 90% classification accuracy are selected as candidate
sets and the tracking performances of these feature sets are
measured. By this way, a representative feature set could be
determined for a specific target type in order to develop a
target tracker that is robust to sudden camera movements,
scale changes, and occlusion, which is the main motivation
of the paper.

3.2 Feature Selection for Aerial Targets
Similar to the approach in Sec. 3.1, a two-class dataset is con-
structed for air surveillance in order to compare the perfor-
mance of different features and feature sets on aerial target-
background classification. The dataset constructed for air
surveillance consists of 600 images of several aerial vehicles
(airplane and helicopter) and 600 background images (sky,
clouds, etc.). The images are the frames of different visual-
band videos captured at different day times, locations, and

Fig. 5 The images of aerial targets.

scenarios. Sample aerial target and background images are
given in Figs. 5 and 6, respectively.

Three hundred out of 600 images are randomly selected
from both target and background images in order to train
the SVM classifier. The remaining 300 aerial target and 300
background images are used in the test phase of the SVM.
The procedure is repeated 10 times in order to obtain robust
accuracies.

The target-background classification performances of the
feature sets are given in Table 2. As per the results pre-
sented for sea-surface targets, all possible combinations of
features are used in the experiments for aerial targets, but
only representative ones are listed in Table 2 to preserve the
readability of the results. Similar to the results given for the
sea-surface targets, the pixel coordinate locations are not dis-
criminative individually and provide low target-background
classification accuracies. However, the classification accura-
cies dramatically increase if the coordinate locations are used
together with other types of features.

As per the classification performance for sea surveillance
presented in Table 1, adding more features does not cause
an increase in target-background classification performance.
Therefore, the performance of the feature sets in aerial tar-
get tracking scenarios are examined by selecting candidate
feature sets that provide over 90% classification accuracy.
In Sec. 4, a regional covariance descriptor-based tracker is
described.

4 Covariance-Based Tracker
The flow diagram of the proposed regional covariance
descriptor-based tracking scheme is given in Fig. 7. The
tracking algorithm is initiated as soon as the target is se-
lected. In general, the initial selection of the target can be
automatic or manual. In this work, the initial target is se-
lected manually in the first frame. Manual target selection
must be done such that the selected gate includes the tar-
get and some proportion of the background. When the target
is not centered in the selected gate (i.e., background covers
much more area than the target), this may result in the degra-
dation of the performance of the tracker. After determination
of the target template (TT), feature descriptors are extracted
from the template and matched with those extracted in the
next frame to find the best matching region (MR,Best). During
matching, a generalized eigenvalue-based similarity metric is
used in order to compare the covariance descriptors extracted

Fig. 6 The background images in air surveillance.
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Table 2 SVM-based aerial target-background classification accura-
cies for different feature sets. The candidate feature sets for aerial
target tracking tests are separated with a line in the table. Although
all possible combinations of the features are used in the experiments,
several but representative ones of them are presented to preserve
the readability of the results.

Feature set
Target-background

classification accuracy (%)

x 45.5

y 54.5

∂1,y 64.8

∂2,y 67.8

GO 70.6

∂1,x 72.0

∂2,x 73.5

I, x, y , ∂1,x , ∂2,x , ∂1,y , ∂2,y , GM, GO 86.6

I, x, y , GM, GO 96.0

I, x, y , GO 96.1

I 98.3

I, x, y , ∂1,x , ∂1,y 98.3

I, x, y , GM 98.6

I, x, y , ∂2,x , ∂2,y 99.0

I, x, y , ∂1,x , ∂2,x , ∂1,y , ∂2,y , GM 99.3

I, x, y , ∂2,x , ∂2,y , GM 99.6

I, x, y , ∂1,x , ∂1,y , ∂2,x , ∂2,y 99.6

I, x, y 99.8

from the TT (MTT) and descriptors extracted from the region
that is desired to be compared (MR):35

ρ(MTT,MR) =
√√√√ D∑

i=1

ln2 λi (MTT, MR), (5)

where {λi (MTT,MR)}i=1,...,D are the generalized eigenvalues
of MTT and MR . In the target search, the sub-region giving
the minimum ρ value with the TT is chosen as the target
region.

In a video frame, the target is searched within a region
[search region (SR)] that surrounds the target center in the
previous frame. The SR consists of pixels that are located in
the τ -pixel neighborhood of the target center in the previous
frame. Depending on the ρ value in the previous frame, the
target is searched in different scales or a single scale. If ρ is
larger than a threshold e0, the target is searched in different
scales (meaning camera zoom or target approach/leave). In
this case, each pixel of the SR is determined as the center
of the candidate region and different scaled rectangles cen-
tered at each pixel of the SR are determined to be candidate
regions. The dimensions of the different scaled rectangles
are determined by multiplying the dimensions of the target

template of the previous frame with the scale coefficient κ .
The tracker contains two shrinkage (κ = {0.8, 0.9}) and two
growth (κ = {1.1, 1.2}) scale coefficients. By this way, the
target is searched within SR using four different scales by
considering the target dimension changes in both a positive
and negative manner. This approach is similar to the Monte
Carlo-based target update strategy presented in Ref. 36.
The candidate region resulting in the smallest ρ value with
the current TT is selected as MR,Best and the TT is updated
using the MR,Best.

In the TT update, Euclidean distance rate (α) and ρ are
used together. α is calculated using the Euclidean distance
(ED) and defined in the Eq. (6).

ED = ‖MR,Best − TT‖2, α = ED

number of pixels (MR,Best)
.

(6)

The TT update strategy depends on the α and ρ values and
their predefined thresholds e2 and e3. If ρ is smaller than
e2, a match is assumed and TT is taken as MR,Best. Other-
wise, the TT is updated according to the α value. In this
case, template change counter (TCC), which is defined to
indicate the number of similar (α < e3) TTs and MR,Best’s in
the consecutive frames, is altered. If the α value defined in
Eq. (6) is less than e3, the TCC value is incremented by one
and TT is updated according to Eq. (7).

TTNext = α(MR,Best) + (1 − α)TT. (7)

In Eq. (7), since α has small values, the previous TT value is
more emphasized in the updated TT.

When the TCC reaches a predefined value (N ), existing
TT is updated with the same strategy, but the MR,Best is more
emphasized in TT update. Therefore, the update in Eq. (7) is
modified as follows:

TTNext = (1 − α)MR,Best + αTT. (8)

In this case, after TT is updated, TCC is reset to zero. The
same zero-resetting is also applied if the α value is larger
than the threshold e3.

In the covariance-based tracker, if TT is largely different
from MR,Best, ρ metric becomes greater than its value in
a normal match. In this case, the algorithm assumes that
the target faced a scale change and initiates a target search
with varying scales. This property enables to track targets
with varying scale and shape. It also provides robustness to
abrupt camera movements, camera vibrations, and sudden
displacements.

In aerial target tracking, if ρ is larger than threshold e1, the
tracker assumes that there is a significant change in the target
model and a target detection strategy is initiated in order to
adapt the TT to the rapid changes in the target model. The
target detection algorithm used in the air surveillance case
is a simple intensity thresholding-based technique that takes
the advantage of contrast difference between the aerial target
and the sky background. The reason to use a simple target de-
tection algorithm is to meet the real-time requirements. The
detection algorithm is tested over plenty of air surveillance
videos and satisfactory detection performances are achieved.

5 Experimental Work and Results
The candidate feature sets providing over 90% target-
background classification accuracy are used in the

Optical Engineering October 2011/Vol. 50(10)107205-5
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Fig. 7 The flow diagram of the regional covariance descriptor based target tracker.

covariance-based tracker, as explained in Sec. 4. The per-
formance of each candidate set is examined for both sea and
aerial surveillance scenario. In each surveillance scenario,
the performance of the tracker is examined by running the
tracker algorithm on two different videos with different can-
didate feature sets. In Sec. 5.1, the performance measures
used to evaluate the tracking performance are described.

5.1 Performance Measures
In order to evaluate the tracking performance in a robust
way, four different morphological similarity measures (P Mi ,
where i = 1, 2, 3, 4) are used. These approaches are pixel-

wise area (P M1 and P M2) and distance-based measures
(P M3 and P M4). Depending on the different scenario cases,
a suitable performance measure can be selected for the evalu-
ation of the track performance. For example, P M3 and P M4
may give erroneous results when used to compare the track
performances for two different targets, one of which cov-
ers a large area in the field of view of the imaging system
and the other is far away from the imaging system. A sim-
ilar case is also possible in the comparison of the tracking
results across imaging systems of different spatial dimen-
sions. For the evaluation of the tracking performance, other
measures relating to track quality such as number of false

Optical Engineering October 2011/Vol. 50(10)107205-6
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tracks, duration of false tracks, successful track length, may
also be used. However, in our case, surveillance videos are
not long enough to carry these analyses. For example, track
length becomes important where targets are tracked in long
term and drift errors result in divergence from the actual
trajectory.

Considering the sample illustration in Fig. 8, the first per-
formance measure (P M1) is defined as follows:

PM 1 = Area(ABGXHD)

Area(ABCD)
, (9)

where Area(ABG X H D) is the area of the polygon that is
formed by the difference of the actual target gate from the
intersection of the target gate obtained by the tracker and the
actual target gate. Area(ABC D) is the area of the rectangle
that symbolizes the actual target gate. The range of P M1
varies as:

PM 1 =
{

0,
1,
(0, 1),

exactly the same,

no similarity,

otherwise.

(10)

The second performance measure (P M2) actually pro-
vides a measure for the similarity of the actual target gate
and the target gate obtained by the tracker (as depicted in
Fig. 8) and P M2 is defined as follows:

PM 2 = Area(XGCH )

Area(XYZT )
, (11)

where Area(XGC H ) is the area of the rectangle that is
formed by the intersection of the target gate obtained by
the tracker and the actual target gate. Area(XY Z T ) is the
area of the rectangle that symbolizes the target gate obtained
by the tracker. The range of the P M2 attains the following
values:

PM 2 =
{

0,
1,
(0, 1),

no similarity,

exactly the same,

otherwise.

(12)

The third performance measure (P M3) is the ED be-
tween the center of the actual target gate (O1 in Fig. 8) and
the center of the target gate obtained by the tracker (O2 in
Fig. 8).

The last metric (P M4) is the “city block distance” between
the center of the actual target gate (O1 in Fig. 8) and the center
of the target gate obtained by tracker (O2 in Fig. 8).

The performance measures defined in this section are cal-
culated for each video frame and the tracking statistics for
each measure (P Mi ) are obtained by averaging the frame-
wise measures.

After obtaining four performance measures, these values
are parametrically fused as in Eq. (13) for the final evaluation
of the tracking performance.

Track Score = (1 − PM1)PM2 − ζ
( PM3+PM4

2

)
. (13)

The P Mi ’s are optimized to form the overall expression in
Eq. (13) in the combined case that P M1 converges to 0, P M2
converges to 1, and P M3 and P M4 also converge to 0. The
parameter ζ in Eq. (13) provides the normalization factor
for the significance of the first and second summands, and is
experimentally selected as 0.01.

Fig. 8 The illustration of actual target gate and the target gate ob-
tained by the tracker. rectangle ABCD: Actual target gate. rectangle
XYZT: The target gate obtained by the tracker.

The tracking results for both surveillance scenarios are
presented in the Secs. 5.2–5.4.

5.2 Tracking of Sea-Surface Targets
As stated in Sec. 3, the feature sets providing over 90% ac-
curacy are selected as candidate features using Table 1. In
this section, the covariance-based tracker is used to track
sea-surface targets for each candidate feature set. The track-
ing experiments are carried out using two visual band videos
captured at different daytimes and at 640 × 480 dimension.
The first video (Sea Video Seq 1) contains 1000 frames of a
moving sea-surface target that is exposed to occlusion in cer-
tain frames. The second video (Sea Video Seq 2) used for
sea surveillance consists of 500 frames of a moving fishing
boat toward a transport ship. The tracking performance of the
tracker in these videos are measured by comparing the tar-
get gate locations obtained by the tracker with the ground
truth target gate locations using the measures defined in
Sec. 5.1.

The tracker parameters τ, e0, e2, e3, and N for sea surveil-
lance scenario are selected as 5, 0.4, 0.1, 0.0019, and 10,
respectively. These values are obtained experimentally by
considering different cases. The evaluation of the track-
ing performance for each candidate feature set is given in
Table 3. The tracking results presented in Table 3 are
the results obtained by averaging each frame-wise per-
formance measures. The frame-wise P Mi ’s for the video
Sea Video Seq 2 are provided in Figs. 9 and 10 as a more
detailed analysis. The gradient-based features are used in this
analysis.

Table 3 shows that the gradient-based feature sets
{I, x, y, GM} and {I, x, y, GM, GO} provide satisfactory
tracking performances in both videos. Since GM and GO
contain the magnitude of the intensity changes in both di-
rections as well as their angular orientations, they are ex-
pected to have better target representation in sea-surveillance
scenarios.

By looking at the results presented in Table 3, one can say
that there exists some feature sets that provide satisfactory
performance only on one video. Apparently, these feature sets
are case-dependent features. Therefore, we can conclude that
it is better not to rely on such a case-dependent feature set
for sea-surface target tracking.

The results presented in Table 3 also show that adding
more features do not necessarily increase the track-
ing performance.34 As an example, although the feature
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Table 3 The performance of candidate feature sets in sea-surface target tracking.

Sea Video Seq 1 Sea Video Seq 2

Candidate Feature Sets PM1 PM2 PM3 PM4 PM1 PM2 PM3 PM4

I, x, y 0.099 0.513 4.98 6.35 0.184 0.807 2.49 2.99

I, x, y , GO 0.245 0.541 5.00 6.28 0.208 0.783 1.97 2.53

I, x, y , ∂1,x , ∂2,x , ∂1,y , ∂2,y , GM, GO 0.692 0.816 4.21 5.78 0.746 0.120 25.93 31.63

I, x, y , GM 0.158 0.834 1.45 1.83 0.127 0.863 1.77 2.03

I, x, y , ∂2,x , ∂2,y 0.376 0.638 2.93 3.30 0.127 0.710 1.48 1.74

I, x, y , GM, GO 0.066 0.908 0.99 1.12 0.120 0.890 1.61 1.81

I, x, y , ∂1,x , ∂1,y 0.001 0.676 2.06 2.74 0.131 0.859 2.13 2.40

I, x, y , ∂2,x , ∂2,y , GM 0.524 0.791 8.39 9.87 0.265 0.843 1.51 1.87

I, x, y , ∂1,x , ∂2,x , ∂1,y , ∂2,y 0.359 0.690 3.37 4.27 0.115 0.894 2.03 2.24

I, x, y , ∂1,x , ∂2,x , ∂1,y , ∂2,y , GM 0.563 0.975 7.10 7.48 0.513 0.258 14.06 17.29

set {I, x, y, ∂1,x , ∂2,x , ∂1,y, ∂2,y, GM, GO} contains more
features, it does not have a positive effect on the tracking
performance. Nevertheless, the set of gradient-based features
was found to be useful on sea-surface target tracking scenar-
ios. In Figs. 11 and 12, the sea-surface target tracking re-
sults obtained by using gradient-based features are presented
for Sea Video Seq 1 and Sea Video Seq 2, respectively. In
Figs. 11 and 12, the sea-surface targets are marked with a
rectangular marker and the line stands for the trajectory of
the target from the initial frame to the current frame.

Finally, the tracking scenario of a scale-varying sea-
surface target is presented in Fig. 13. In the video, there is a
slow moving cargo ship on the horizon. The operator zoomed
into the cargo ship, causing significant scale changes within
a few hundred frames. The tracking results presented in
Fig. 13 show that the tracker can successfully handle sud-
den scale changes due to zooming.

Fig. 9 The frame-wise PM1’s and PM2’s of the video Sea Video
Seq 2.

5.3 Tracking of Aerial Targets
In this section, the candidate feature sets for aerial surveil-
lance scenarios determined in Sec. 3 are used in the
covariance-based tracker. The performance of the tracker is
evaluated by using the performance measures on two vi-
sual band videos. The first video used for aerial surveil-
lance (Air Video Seq 1) consists of 187 frames of dimension
640 × 480. The video contains a helicopter moving away
from the capture device. The video was captured on a windy
day and the capture device was not properly stabilized. There-
fore, there are some vibrations and sudden movements that
reduce the quality of the captured video and make the target
tracking task more complicated. The second video used for
aerial surveillance (Air Video Seq 2) consists of 100 frames.
The video contains a trainer aircraft moving fast to the right
of the capture device. The video was captured on a windy day
and the capture device was not properly fixed to the ground.

Fig. 10 The frame-wise PM3’s and PM4’s of the video Sea Video
Seq 2.
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Fig. 11 The illustration of the sea-surface target tracking in certain
frames of Sea Video Seq 1.

Consequently, there are abrupt movements, vibrations, and
flicker effects in both of the video sequences.

The performance of each feature set used in the tracker is
examined by running the tracker on the videos and com-
paring the target locations obtained by the tracker with
the ground truth target locations. The tracker parameters
τ, e0, e1, e2, e3, and N for air surveillance scenarios are se-
lected as 10, 0.4, 0.5, 0.1, 0.0019, and 3, respectively. As in
the sea surveillance case, these values are obtained experi-
mentally by considering different cases. The performances
of the candidate feature sets on aerial surveillance videos
are given in Table 4. The results indicate that, similar to
the sea surveillance scenario, the gradient-based feature sets
{I, x, y, GM, GO}, {I, x, y, GO}, and {I, x, y, GM} pro-
vide satisfactory tracking performance on both videos. In ad-
dition, the feature set {I, x, y, ∂1,x , ∂1,y} outperforms most
of the feature sets in the aerial surveillance scenarios.

Since the aerial surveillance scenarios do not contain com-
plex backgrounds, i.e., the gray colored aircraft and low-
contrast sky background, the availability of the feature sets
that enable robust tracking increases. As an example, the fea-
ture set {I, x, y}, which seemed to be one of the most simple

Fig. 12 The illustration of the sea-surface target tracking in certain
frames of Sea Video Seq 2.

Fig. 13 The illustration of the sea-surface target tracking when the
target scale changes drastically.

candidate sets, provides an acceptable performance in aerial
target tracking.

Parallel to the results given for the sea surveillance sce-
nario, adding more features may not guarantee an increase
in the tracking performance. As an example, the feature
set {I, x, y, ∂1,x , ∂2,x , ∂1,y, ∂2,y, GM} does not provide bet-
ter tracking results on both videos. Therefore, it is reasonable
to use the feature set that has the lowest computational cost
on aerial target tracking scenarios. But, as the background
complexity increases (existence of target colored clouds or
target-like structures), it is better to use gradient-based fea-
ture sets that may provide more discriminative power. In
Figs. 14 and 15, the aerial target tracking results ob-
tained by using gradient-based features are presented
for Air Video Seq 1 and Air Video Seq 2, respectively. In
Figs. 14 and 15, the aerial targets are marked with a rect-
angular marker and the line stands for the trajectory of the
aerial target from the initial frame to the current frame. In
Figs. 14 and 15, there exists some camera movements to lo-
cate the target to the center of the screen. These movements
affect the appearance of the target trajectory and cause the
trajectory lines to intersect at certain locations. For example,
in Fig. 14, the target moves out of the SR due to an abrupt
camera movement at a certain frame. The tracker handles the
situation with the SR and catches the target again in the next
frame. This illustration is a good example of how the tracker
handles the instantaneous changes in target’s position and
shape.

Finally, the tracking scenario of a scale-varying aerial
target is presented in Fig. 16. The scenario shows that the
tracker can easily handle gradual scale changes such as an
aircraft approaching the capture device. The tracker can also
compensate sudden scale changes such as zooming.

5.4 Performance Comparison Using Different
Target Trackers

As an additional experiment, the performance of the proposed
target tracker scheme is compared with the standard target
tracker techniques including correlation,18 KLT feature,37–39

and SIFT10 based trackers. The performance of these track-
ers in both sea-surface and aerial videos are presented in
Table 5.
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Table 4 The performance of candidate feature sets in aerial target tracking.

Air Video Seq 1 Air Video Seq 2

Candidate Feature Sets PM1 PM2 PM3 PM4 PM1 PM2 PM3 PM4

I, x, y , GM, GO 0.085 0.666 0.87 1.05 0.230 0.785 1.84 2.13

I, x, y , GO 0.085 0.653 0.95 1.16 0.244 0.805 1.69 1.96

I 0.585 0.407 2.36 2.95 0.432 0.550 3.61 4.66

I, x, y , ∂1,x , ∂1,y 0.091 0.687 0.88 1.02 0.266 0.807 1.80 2.09

I, x, y , GM 0.072 0.647 0.91 1.07 0.270 0.779 2.27 2.58

I, x, y , ∂2,x , ∂2,y 0.069 0.651 0.89 1.04 0.293 0.727 2.92 3.29

I, x, y , ∂1,x , ∂2,x , ∂1,y , ∂2,y , GM 0.096 0.659 0.94 1.15 0.284 0.757 2.46 2.81

I, x, y , ∂2,x , ∂2,y , GM 0.100 0.656 0.90 1.10 0.303 0.747 2.51 2.91

I, x, y , ∂1,x , ∂2,x , ∂1,y , ∂2,y 0.082 0.664 0.85 1.03 0.324 0.772 2.91 3.27

I, x, y 0.091 0.681 0.90 1.09 0.247 0.749 2.37 2.73

In the literature, correlation-based tracking approaches
are widely used due to their naive structures and low com-
putational cost. Although many of the correlation-based ap-
proaches provide low computational cost and perform at real-
time, they are too sensitive to the occlusion and rapid changes
in the target appearance. For performance comparison pur-
poses, an image correlation-based tracker is implemented.
The correlation-based tracker is initiated by selecting the tar-
get manually. It uses the normalized cross-correlation func-
tion in order to obtain a measure that indicates the quality
of the match between the target template and the candidate
target region in the ROI. The candidate region providing the
largest matching measure is determined as the best matched
region. If the largest matching measure is greater than a
predefined threshold (selected as 0.9 in the experiments),
the target template is updated using the Euclidean distance-
based update strategy defined in Eq. (7). Otherwise, the target
template is not updated. In the experiments, the parameter α

Fig. 14 The illustration of the aerial target tracking in certain frames
of Air Video Seq 1.

Fig. 15 The illustration of the aerial target tracking in certain frames
of Air Video Seq 2.

Fig. 16 The illustration of the aerial target tracking when the target
scale changes gradually.
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Table 5 The performance of reference trackers in both sea-surface and aerial target tracking.

Sea Video Seq 1 Sea Video Seq 2 Air Video Seq 1 Air Video Seq 2

Reference Trackers PM1 PM2 PM3 PM4 PM1 PM2 PM3 PM4 PM1 PM2 PM3 PM4 PM1 PM2 PM3 PM4

Correlation 0.195 0.701 3.52 4.06 0.021 0.855 1.24 1.56 0.464 0.524 2.08 2.47 0.672 0.372 5.37 7.10

KLT feature 0.918 0.123 29.43 32.29 0.697 0.571 3.47 4.76 0.534 0.367 5.73 7.09 0.142 0.142 6.49 8.48

SIFT 0.305 0.612 4.77 5.82 0.167 0.234 10.92 14.06 0.217 0.292 3.39 4.47 0.556 0.564 5.49 6.82

of the Euclidean-based update strategy is selected as 0.05.
The implemented correlation tracker performs at real-time
indeed, the track is lost when there is an occlusion or sud-
den changes in the target appearance. The performance of
the correlation tracker on sea-surface and aerial scenarios is
provided in Table 5. Especially on Sea Video Seq 2, the cor-
relation tracker provides satisfactory results. However, the
video sequence Sea Video Seq 2 contains neither any rapid
changes nor partial occlusions in the target model. The cor-
relation tracker starts to perform poorly as in the scenarios
Sea Video Seq 1, Air Video Seq 1, and Air Video Seq 2,
if the target model is exposed to rapid changes and partial
occlusion. Additionally, an example set of tracking result
images that illustrate the failure of the correlation tracker in
the case of rapid target appearance and scale changes is pre-
sented in Fig. 17. Although the covariance tracker still tracks
the target under sudden changes in the target model due to
its scale invariance property, the correlation tracker loses the
track under the same circumstances.

The second tracker used in the performance comparison
is the KLT feature tracker. In the literature, this method
is used to extract interest points and match these features
in the subsequent frames. KLT feature tracker is a sparse
optical flow method based on three assumptions: constant
brightness, small movements in time, and coherent motion
at neighboring elements. A sparse and iterative version of
the KLT feature tracker in a pyramidal structure, described
in Ref. 40, is implemented for performance comparison in
this study. The target is selected manually in order to initi-
ate the KLT feature tracker. A 10×10 search window and
5 level pyramid is used for tracking purposes in the imple-
mentation. Similar to the correlation tracker, the KLT fea-
ture tracker performs beyond real-time but it is even much
more sensitive to the occlusion than the correlation tracker.
The performance of the KLT feature tracker on both
sea-surface and aerial scenarios are provided in Table 5.
According to tracking results provided in Table 5, the KLT
feature tracker performs poorly on both sea-surface and aerial
surveillance scenarios. One reason for this poor performance
is the KLT feature tracker’s structure. Since the KLT tracker
tracks a number of strong features, it cannot localize the tar-

Fig. 17 The correlation tracker fails to track the target when there
exists a rapid change in the target model.

get gate properly. Therefore the P Mi ’s used in this paper
are not eligible for the KLT feature tracker. Another reason
for the poor performance of the KLT feature tracker is its
inability to handle any level of occlusion. In addition to the
tracking results given in Table 5, an example set of tracking
result images that illustrate the failure of the KLT feature
tracker in the case of partial occlusion is presented in Fig.
18. By looking at Fig. 18, one can say that the KLT fea-
ture tracker is not robust to any level of occlusion. Since the
KLT feature tracker is not a target-model–based tracker, it
does not provide any information about the target shape. Due
to these disadvantages, the proposed covariance descriptor-
based tracker framework outperforms the KLT feature tracker
in both sea and air surveillance scenarios.

The last tracker implemented for performance compar-
ison is the SIFT-based tracker.10 In the initialization of the
tracker, the target model is selected manually. Then, the scale-
invariant features proposed by Lowe are extracted from the
target template and from the search region, i.e., ROI. These
extracted features are invariant to scale changes due to the
pyramidal structure of the feature extraction scheme. The fea-
tures, i.e., SIFT descriptors, extracted from both target and
search region are matched with an Euclidean distance-based
measure. If the measure is greater than a threshold, the de-
scriptors are considered as matched. However, there may be
false matches between the descriptors that cause information
losses in the target model and track loss. Therefore, a match
pruning mechanism is implemented as a post-processing op-
eration using a gradient clustering type of approach. By this
way, the outliers of the gradient of the matching lines are
removed. Although SIFT features are known as powerful
features, the computational complexity of the implementa-
tion is high due to the pyramidal feature extraction process
with additional post-processing operations. Moreover, the
SIFT-based tracker is not suitable to track point/point-like
targets because the discriminative SIFT-based features can-
not be extracted from these types of targets. In our case, the
SIFT-based tracker cannot extract important interest points
from the aerial targets that have a tendency to be point-like
structures. The SIFT-based tracker performs poorly on both
sea and aerial surveillance videos as given in Table 5, since it

Fig. 18 The KLT feature tracker is far too sensitive to the partial
occlusion. It cannot track the desired target.
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cannot locate the target position properly. The SIFT features
extracted from the target template may not span the whole tar-
get model that provides information and localization losses in
the target model. Therefore, the proposed covariance track-
ing scheme outperforms the SIFT-based structure, especially
in aerial target tracking.

The experimental studies show that the proposed tracking
system outperforms classical target tracking algorithms. By
comparing the results in Tables 3 and 4 with Table 5, one
can generalize that P M1, P M3, and P M4 obtained with the
reference trackers is greater than the results obtained using
the proposed tracking scheme. Similarly, P M2 values face a
harsh decrease when the reference trackers are used instead
of the proposed tracking scheme. Although there exists track
losses in the reference trackers, we computed performance
measures for the completeness of the comparisons. The track
losses cause a harsh decrease in the tracker performance
and may not be suitable for a fair comparison between the
proposed tracking scheme and baseline tracking techniques.

6 Conclusion
In this paper, an offline feature selection system is proposed
for the regional covariance descriptor-based target tracking
framework to track sea-surface and aerial targets in visual
band videos in a robust way. Due to the low computational
complexity of the covariance descriptors, the proposed tar-
get tracking scheme can be easily adapted to the real-time
applications. The contribution of the paper is to obtain fea-
ture characteristics for both sea-surface and aerial targets
by performing an offline feature selection followed by fea-
ture evaluation based on tracking using several performance
measures. In order to extract the feature characteristics of dif-
ferent platforms, an offline target-background classification
mechanism followed by a tracking performance test is pro-
posed. Here, the successful sets of features for classification
were determined as candidates for promising tracking perfor-
mance. The experimental results show that the background
complexity is the major factor that affects the feature selec-
tion. As the background complexity increases, more complex
features that have more discriminative power are needed. In
our case, the background in sea-surveillance is more com-
plex than the background in aerial surveillance. Therefore,
the gradient-based features that contain the magnitude and
the orientation of the intensity changes in both directions
provide better tracking results in sea surveillance scenarios.
Based on our experimental observations, the addition of more
features was observed not to necessarily guarantee a better
target representation in both surveillance scenarios, provid-
ing a sample case of “curse of dimensionality”. The target
search strategy does not use the kinematic information of
the target in the successive frames and therefore is robust
to abrupt target changes. The tracking performance of the
proposed algorithm is compared with the classical tracking
methods including correlation, KLT feature, and SIFT-based
trackers. Experimental results show that the proposed track-
ing scheme outperforms these classical baseline methods.

Despite the difficulty of obtaining real-life experimental
video sequences, great effort was paid in achieving a rea-
sonably large data set with different backgrounds, weather
conditions, and platforms for the sake of robust offline fea-
ture selection and evaluation. Nevertheless, it is clear that the
proposed approach can be readily extended to various differ-
ent scenarios and other imaging systems, including infrared

imaging, by the same offline feature analysis idea (proposed
herein).

As a future work, an online feature selection technique
with real-time processing capability is aimed to be devel-
oped. Additionally, a target motion estimator-based frame-
work is intended to be implemented and used together with
the proposed tracking scheme in order to provide a compact
solution for target tracking applications.
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member of the Electrical, Electronics and Informatics Research Fund
Group of the Scientific and Technological Research Council of Turkey.
He is in the Editorial Board of Turkish Journal of Electrical Engineer-
ing and Computer Science and Elsevier: Digital Signal Processing.
His research areas include signal analysis, image processing, and
signal coding.

Optical Engineering October 2011/Vol. 50(10)107205-13

http://dx.doi.org/10.1364/AO.43.005198
http://dx.doi.org/10.1117/1.1387989
http://dx.doi.org/10.1109/7.599339
http://dx.doi.org/10.1109/7.599339
http://dx.doi.org/10.1117/1.2173948
http://dx.doi.org/10.1155/2010/475948
http://www.csie.ntu.edu.tw/cjlin/libsvm
http://dx.doi.org/10.1016/j.eswa.2009.01.051
http://dx.doi.org/10.1016/j.eswa.2009.01.051

