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Image enhancement is an important preprocessing step of infrared (IR) based target recognition and surveil-
lance systems. For a better visualization of targets, it is vital to develop image enhancement techniques that
increase the contrast between the target and background and emphasize the regions in the target while sup-
pressing noises and background clutter. This study proposes what we believe to be a novel IR image enhance-
ment method for sea-surface targets based on local frequency cues. The image is transformed blockwise into
the Fourier domain, and clustering is done according to the number of expected regions to be enhanced in the
scene. Based on the variations in the elements in any cluster and the differences between the cluster centers
in the frequency domain, two gain matrices are computed for midfrequency and high frequency images by
which the image is enhanced accordingly. We provide results for real data and compare the performance of the
proposed algorithm through subjective and quantitative tests with four different enhancement methods. The
algorithm shows a better performance in the detail visibility of the target. © 2010 Optical Society of America
OCIS codes: 100.2000, 100.2980, 110.3080, 330.1800, 110.3000.
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1. INTRODUCTION

The processing of sea environments in an IR band is a
challenging research subject because the sea radiance de-
pends on sky reflections, sun glints, blackbody emissions
from wave facets, and atmosphere [1]. Apart from the
background clutter, low signal-to-noise ratio, low con-
trast, sensor noises, and the thermodynamic state of the
targets affect the detection and visualization of the tar-
gets in the sea background or at the horizon. Therefore,
for a successful target detection and a better visualization
of high dynamic range (HDR) IR images, it is important
to develop efficient enhancement techniques that increase
the contrast between the target and background and em-
phasize target edges, while suppressing noises and the
background clutter without introducing artifacts.

In image enhancement, the proposed solutions are case
dependent; therefore, it is very difficult to develop an en-
hancement technique working well under different condi-
tions. Similarly, there is no standard or metric for the per-
formance comparison of the enhancement techniques [2].
In this study, we will focus on the IR images consisting of
sea-surface targets. Many of the surveillance systems re-
quire intruder detection, threat detection approaching
from the sea or horizon, and a better visualization of tar-
gets for classification and identification purposes. To the
best of our knowledge, no attempt has been previously
made to develop an IR image enhancement technique spe-
cific for sea-surface targets and to compare its perfor-
mance with histogram and unsharp masking (UM) based
methods. We propose an adaptive enhancement method
based on the local frequency cues in the image. We show
through subjective and quantitative tests that it performs
well for the detail visibility in the target region.

This paper is organized as follows: Section 2 reviews
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the state-of-the-art IR image enhancement techniques. In
Section 3, the proposed algorithm is explained. The ex-
perimental results with a detailed discussion of the ef-
fects of the algorithm parameters on the performance are
provided in Section 4. Subjective and quantitative com-
parisons are presented in Section 5 together with a brief
description of the compared methods. The concluding re-
marks are made and directions for future research are
provided in the last section.

2. RELATED WORK ON IR IMAGE
ENHANCEMENT

The image enhancement techniques can be generally di-
vided into four categories, which are amplitude scaling,
histogram modification, noise removal, and edge enhance-
ment [2]. In an earlier work [3], contrast improvement
techniques such as bit slicing, histogram equalization,
and contrast improvement through look-up tables are
used, together with noise reduction techniques, for image
enhancement. The IR image sequences are enhanced by
the motion estimation in [4-6]. The dynamic range en-
hancement is accomplished using a logarithmic image
processing model in [7]. In [8], the effects of the IR image
enhancement techniques on human based target detec-
tion are evaluated via psychophysical experiments. The
authors implemented three different histogram modifica-
tion techniques which are histogram projection, histo-
gram equalization, and histogram weighted hybrid map-
ping and median filtering. In [9], the authors proposed a
manual display mapping for a better visualization of
12-14 bit IR images in 8 bit displays. A two-stage IR im-
age enhancement technique based on local and global con-
trast enhancement is proposed in [10]. They enhanced
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first global contrast by adaptive plateau histogram equal-
ization (APHE) and then used adaptive gain control based
on the wavelet transform for the local contrast enhance-
ment. A tail-less version of the APHE and a version of the
UM method, method of Aare Méllo (MAM), are applied for
the IR image enhancement in [11]. In [12], an adaptive
contrast enhancement method based on the wavelet
transform is proposed. A local area processing method
based on histogram shaping and the adaptive Wiener fil-
tering for noise removal are used for the contrast en-
hancement in [13]. The adaptive unsharp masking (AUM)
technique is proposed in [14] for the image enhancement.
A quantitative assessment of the UM method in x-ray
fluoroscopy is made in [15]. In [16], the edges are en-
hanced by adaptive thresholding using the error-diffusion
algorithm. The authors implemented a spatiotemporal
homomorphic filtering technique using a qualitative
model for the far IR scenes in [17]. An adaptive version of
the same method is proposed in [18]. The IR images are
enhanced using the autoregressive moving average filter
and H,, bounds in [19]. In [20], an anomalous frequency is
detected using Fourier transform along the column in the
image block and inverse Fourier transform is applied to
the thresholded frequency for enhancement. The IR im-
age enhancement based on a human visual system is pro-
posed in [21] using the multifractal theory. Balanced con-
trast limited adaptive histogram equalization and
contrast enhancement (BCLAHE-CE) techniques are
used together for an improved visualization of the IR im-
ages in [22]. An evaluation is performed through a subjec-
tive analysis based on human observers. It outperforms
the histogram equalization, Fattal’s method [23], and the
retinex algorithm [24] in the subjective tests. In [25], a bi-
lateral filter is used for the dynamic range compression of
the IR HDR images and the proposed algorithm is com-
pared with the histogram equalization and retinex algo-
rithm. In our earlier work [26], we made a comparative
analysis of the different IR image enhancement tech-
niques for sea-surface targets. It is observed that the
BCLAHE-CE provides good results for different scenarios
in the subjective and quantitative tests among the com-
pared methods.

3. PROPOSED IR IMAGE ENHANCEMENT
METHOD

In this study, we are mainly interested in the enhance-
ment of IR images consisting of sea-surface targets. An
example image and its histogram are shown in Figs. 1(a)
and 1(b), respectively. As shown in Fig. 1(b), the histo-
gram has a three modal distribution, where the first and
second parts of the distribution correspond to the sea and
sky regions, respectively. They have intensity values
ranging approximately between [1180,1280] and
[1350,1370]. The third part of the distribution having
greater intensity values ranging approximately between
[1440,1560] corresponds to the target. Our aim is to em-
phasize the target regions and detail level in the target
without introducing an undesirable artifact and increas-
ing the noise level in the image. We propose an adaptive
method based on local frequency cues (AMLFC). The pro-
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Fig. 1. (a) Sample image and (b) its histogram.

posed method has two stages: local clustering in the fre-
quency domain and image enhancement.

According to this method, first of all, an image of size
M X N is divided into blocks at a specified size B X By and
the discrete Fourier transform (DFT) of each block is com-
puted. The evaluated DFT coefficients are then used to
cluster these blocks according to their frequency domain
characteristics which are the key features used to dis-
criminate the regions to be enhanced. In fact, the motiva-
tion at this point is to enhance the high frequency compo-
nents as suggested by the method of UM [27]. On the
other hand, the enhancement procedure is applied to the
decided possible target regions with higher gain which
makes the details of the image more visible but especially
inside the target. For this purpose, the image is passed
through appropriate filters and a low-pass, a mid-pass,
and a high-pass image are obtained with a size of M X N.
Then, two M X N gain matrices, one of which is used to en-
hance the mid-pass while the other one is used to enhance
the high-pass image, are elementwise multiplied by the
mid-pass and high-pass images, respectively. Each ele-
ment of those matrices is evaluated according to the three
different attributes listed as follows:

¢ frequency characteristics of the cluster that the ele-
ment is included;

e similarity between the frequency characteristics of
the block that the element is included and the frequency
characteristics of the corresponding cluster;

e distance between the spatial location of the element
and the center points of the blocks.
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The first two factors are for realizing our main motiva-
tion of adaptive frequency selective enhancement while
the last factor is for removing the blocking artifacts
caused by the proposed procedure. Finally, using the low-
pass image and the enhanced mid-pass and high-pass im-
ages, the resultant enhanced image is reconstructed. The
details of the algorithm are explained in the subsequent
sections.

A. Clustering in Frequency Domain

The target, sea, and sky regions have different frequency
contents due to their textures. The sea surface usually
consists of wave reflections with an additive noise and the
sky has a gradual intensity distribution with noise added
on it. The frequency distribution in the target regions dif-
fers from the sea and sky transitions due to its shape.
Fourier transforms of the blocks corresponding to the tar-
get, target-sea transition, sea surface, and sky [Fig. 2(a)]
are shown in Figs. 2(b)-2(e), respectively. As seen from
the figure clearly, the four parts of the IR scene have dif-

magnitude

(d) (e)
Fig. 2. Fourier transform of the blocks given in (a): (b) target (c)
target-sea transition, (d) sea, and (e) sky.
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ferent frequency characteristics, ranking from low to high
as sea surface, sky, target, and target-sea transition,
which is our main motivation in choosing the local fre-
quency clustering approach.

The images to be enhanced have HDR characteristics.
The local frequency clustering operations are done using
these HDR images. For each block, Fourier transform is
computed by the equation below:

Bi-1By-1

2 E Ii(x,y)e—jZw[(ux/Bl)+(uy/BZ)], (1)
x=0 y=0

F, =
i(u,v) B.B,

where I;(x,y) and F;(u,v) are the ith block of the image
and its Fourier transform, respectively. Then, the abso-
lute value of the 2-D frequency distribution of each block
is converted to a vector V; by zigzag scanning. As the Fou-
rier transform is symmetric for real data, we use only half
of it. Therefore, the length of V; is B;B,/2. The Euclidian
distances between these arrays, d, as given in Eq. (2), are
used to construct a hierarchical cluster tree and the clus-
tering is done using this tree with respect to the nearest
distance [28],

dgs = (Vr - Vs)(vr - VS)T' (2)

The maximum number of clusters ¢ is a parameter and is
set according to the number of regions to be enhanced.
The clustering result for the image shown in Fig. 1(a) is
given in Fig. 3 for ¢=6. As a result of the clustering pro-
cess, each block of the image is assigned to a cluster. A
cluster center CC is calculated by averaging the V;’s. The
computed cluster centers for the same image are shown in
Fig. 4. These cluster centers are sorted according to the
in-cluster frequency distribution. The vectors correspond-
ing to each cluster center are normalized with the energy
of that cluster in overlapping windows of size 3 to find the
normalized cluster centers C_Cj’s, whose nth element is
evaluated by the equations below:

B1By/2

TE;= >, [CCP, 3)
n=1

[CCj(n - I*+[CC;(n)]* +[CCj(n + 1)]?

TE; ’

CCj(n) =

4)

where j represents the cluster number ranging from 1 to
¢c; TE; is the energy of the jth cluster center CC;. Then,
the weights for each cluster center are defined as in Eq.

(5),
B1By/2

w;= El CCj(n)n. (5)

These weights are used to sort clusters from high to low
according to their frequency components and as a gauge
to show inter-cluster distances. The blocks in the cluster
with the highest cluster center weight are assumed to be
in the target region whereas those in the cluster that
have the smallest cluster center weight are assumed to be
the background. In addition, the gains assigned to each
block center are derived from the corresponding w;. This
process will be explained in the next section.
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B. Enhancement

A modified UM based adaptive enhancement technique is
applied in the AMLFC. The UM based methods divide the
original image into its low and high frequency images.
The enhancement is usually done by the multiplication of
the high frequency image with a constant to emphasize
the details in the image [27]. However, with these meth-
ods, the background clutter is also enhanced at the same
time due to the global implementation and halo effects oc-
cur around the hot targets [22].

In our method, on the other hand, by adjusting the
gains with the help of the weights calculated according to
the results of the frequency clustering stage, each midfre-
quency and high frequency component of the image blocks
is enhanced with different gain coefficients. The halo ef-
fects are reduced by enhancing the two different fre-
quency components properly.

1. Gain Matrix Generation

The midfrequency image consists of transitions in the tar-
get texture whereas the high frequency image consists of
mostly Gaussian noises. So different gain factors for these
two filtered images are defined to enhance the details of
the target area while suppressing the noise in the image.
Instead of multiplying the midfrequency and high fre-
quency components of each block with a single gain coef-
ficient, two different gain matrices are constructed for
each image which has the same size as with the original
image. Each pixel in the image has a different gain coef-
ficient according to its spatial position and the frequency
characteristics of the block it belongs to. Hence, the mul-
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tiplication of the midfrequency and high frequency im-
ages with these gain matrices removes the blocking arti-
facts.

The gain matrix is computed by first assigning weights
w to each block center according to the cluster to which
that block belongs to as given in the following equation:

BW(k)=wj, kth block e cluster;, (6)

where BW is the weight of the kth block and % changes
from 1 to b, total number of blocks. Then, the distance
from a single pixel to all block centers BC is computed us-
ing the equation below:

1
JBC,(x,) —x)%+ (BCy(y,) -y + €

Dy(x,y) = (7)

where x, and y, are the coordinate centers of the block
centers and € is a small number (0.1 in our case) added to
avoid an infinite multiplication coefficient at the weighted
sum calculation.

The gain matrix G(x,y) is constructed using the Euler
distance from that pixel to the block centers and the
weight of the corresponding block center as in Eq. (8),

b Dylx,y)
Gly) =D 5

k=1
> Dyxy)
=1

BW(k). (8)

As can be seen from the formulations, while the distance
between the pixel and the block center increases, the con-
tribution of the weight of that block center in the calcula-
tion of that pixel’s weight decreases. In Fig. 5, the gain
matrix can be seen which is evaluated for the image given
in Fig. 1(a). This matrix is mapped to the two different
ranges and the two different gain matrices, G,;q and
Ghigh, are constructed by the following equations:

G i) (G(x,y) - Gmin) mid )
mid\X,Y) = (Gmax _ Gmin) + ﬁmid’

(G(x,y) = Gin) Ohigh
(Gmax - Gmin)

where G, and G, are maximum and minimum values
of the gain matrix, ayiq and ay;g are multiplicative coef-

Ghign(x,y) = + Bhigh> (10)

1.08

= e
3 8

magnitude

e
Q
R

150

Fig. 5. Gain matrix.
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ficients, and B,;q and By, are the offset parameters for
the midgain and high gain matrices, respectively. The pa-
rameters, Bpiq and Buign are adjusted such that the en-
hanced images are not saturated. These parameters can
be set by the user considering the scenario properties
such as the noise level and the target size.

2. Construction of Low Frequency, Midfrequency, and
High Frequency Images

The image is linearly mapped to the 8 bit dynamic range
and low frequency, midfrequency, and high frequency
components of the image are extracted from this image.
This avoids extra linear mapping parameters for midfre-
quency and high frequency HDR images. The high fre-
quency image (Ipig) is extracted by first passing the origi-
nal image from a 5X5 averaging filter and then
subtracting the result from the input of the filter. The low
frequency image (I, is extracted by passing the original
image from a 25X 25 averaging filter. The midfrequency
image (I,;q) is obtained by subtracting the low and high
frequency images from the original image.

3. Image Enhancement and Reconstruction

After defining and constructing the gain matrices and fre-
quency components of the original image, elementwise
multiplication between the midfrequency and high fre-
quency images and their corresponding gain matrices is
performed. At the next step, the resultant three images
are added to obtain the enhanced image (I.,,) as de-
scribed in the equation below:

Ienh(xyy) = Ilow(x’y) + Gmid(xyy)lmid(x’y)
+ Ghigh (6,5 M pign(,y) . (11)

Then, the enhanced image is clipped between [0,255] in-
tervals.

4. EXPERIMENTAL RESULTS

Sample images are extracted from IR videos recorded us-
ing longwave calibrated cameras of detector sizes
[136,272] and [240,320] located on stabilized platforms.
The field tests include targets of different sizes located at
different distances and orientations from the observer.
The targets at the horizon, multiple targets, and targets
with land background are also considered.

(d) (e)
Fig. 6. (a) Original image and enhancement results (ay;g,=10,
C=6, Bmidzﬁhigh=0'5, and B1=B2=16) fOI‘ (b) amid=0‘59 (C) dmid
=1.5, (d) amid=2.5, and (e) amid=3.5.
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(e)
Fig. 7. (a) Orlgmal image and enhancement results (a,,;3=0.5,
C=6, ﬁmidz Bhigh=0'5’ and Bl =B2=16) for (b) ahigh= 1, (C) ahigh= 5,
(d) aigh=10, and (e) ap;gn=15.

The parameter a;q is the multiplicative coefficient for
the G ;g matrix used for contrast improvement in the tar-
get region and suppressing the reflections from the sea
waves. The results obtained for different a,,;q values are
shown in Fig. 6. Small values of a,,;q cause the truthful-
ness of the image to decrease while large values of a;q
cause the detail visibility of the target to decrease because
intensity values in the target region saturate and the de-
tail visibility of the target decreases.

Figure 7 shows the results obtained for different values
of apigh, Which is the multiplicative coefficient for the
Ghigh matrix. The target details of the original image are
enhanced because apiq, increases the high frequency de-
tails in the target region. Non-target regions are affected
less due to the structure of the gain matrix. While setting
@high more than unity results in an enhancement of the
target edges and details, increasing ayi,, more saturates
the image in the target region and the target details are
lost.

The effects of different ¢ values can be seen in Fig. 8.
More clusters result in more transition blocks from the
target region to the background. So bigger gain values
spread to a wider region spatially around the target. It is
more likely to merge the target with the horizon if the tar-
get size and the value of ¢ are small. These parameters
are modified by the user depending on the noise and tar-
get properties. During this work, it is observed that ¢=6
is large enough to segment the images properly in our
data set.

The parameters B,iq and By;. are defined as the offset
parameters of these two gain matrices and are chosen to

—

(d) (e)
Fig. 8. (a) Original image and enhancement results (ay;g=10,
@i = Bmia=Bhigh=0.5, and B1=B,=16) for (b) c=2, (c) c=4, (d) ¢
=6, and (e) c=8.
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Fig. 9. [(a), (¢), (e), (g), and (i)] Original images and enhance-
ment results (Byiq=0.5) for (b) apiq=1.5, apign=10, and By
=0.5, (d) Amig= 15, ahigh= 10, and IBhigh=0'57 (ﬁ amid=0.5, ahigh
=10, and By;gh=0.5, (h) ay,;g=0.5, apign=10, and By, =0.5, and ()
Apig= 15, ahigh=2, and Bhighzo'l'

be less than 1 to suppress background clutter. The results
for different scenarios are given in Figs. 9 and 10. In the
results, the height and the width of the blocks are taken
as 16. The parameters amig, @high, Bmia> and Bpign are
adapted for different scenarios to obtain better results in
terms of the visibility of the target details without intro-
ducing any artifacts. The high frequency noise suppres-
sion, wave glint removal, and target detail and edge en-
hancement are achieved for real data by adjusting the
values of these parameters. For moderate midfrequency
and high frequency suppressions in the sea and sky re-
gions, Byiq and Bpig, are chosen as 0.5. In Fig. 9(i), a noisy
image is seen and the high frequency noise suppression is

(d) (e) ()

Fig. 10. [(a), (c), and (e)] Original images and enhancement re-
sults (Bhigh=0~5) for (b) Apig= 15, Qpigh= 10, and Bmid=0~5v (d)
dpig= 15, Qhigh= 10, and Bmidz 05, and (f) dnid= 0.5, Qpigh= 10, and
ﬁmid=0'1'
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achieved in Fig. 9(j) by setting By;gn to 0.1. A small target
still exists without loss of detail or contrast. The effect of
setting the value of By;q to 0.1 is seen in Fig. 10(f), where
the midfrequency components of the image are sup-
pressed in the background region and wave glints are re-
moved in the enhanced image.

5. COMPARATIVE ANALYSIS

In this section, the comparison of the proposed method
with other well known techniques is presented based on
subjective and quantitative tests. The compared algo-
rithms are selected as APHE, BCLAHE-CE, MAM, and
AUM. The first two methods are chosen because it has al-
ready found that they show good performance between
the histogram based approaches [26]. The other methods
are chosen for a fair comparison of the proposed method
with other UM based methods. We believe that the choice
of the algorithms will serve our comparison purposes.

A. Compared Algorithms

In adaptive thresholding, the nonzero elements of the his-
togram are found and smoothed using a median filter. The
maximum gradients are computed using the difference
between the subsequent elements of the filtered vector.
The mean of the maximum gradients is taken as the
threshold for the APHE. The original histogram is clipped
below this threshold. The cumulative distribution func-
tion (CDF) of the modified histogram is computed and the
original image is remapped using the modified CDF.

The BCLAHE-CE method integrates the process of dy-
namic range compression and local contrast enhance-
ment. An operation on the image is given in the equation
below:

(12)

I(x,y) ]
Ilow(xyy) ’

Iopn(x,y) =p (x,y)){

where p is the mapping function and vy is the contrast en-
hancement factor. The original histogram of the image is
clipped to 1% of its total pixel number and excessive pix-
els are distributed over the entire image. This method is
implemented locally by dividing the image into blocks and
the equalization curve is constructed by the weighted av-
erages of the curves for each block. A local implementa-
tion adapts the mapping function of the intensity image.
In the MAM, using the averaging filter and image sub-
traction, the image is separated into its low and high fre-
quency bands. A linear scaling is applied to adapt the dy-
namic range of the low-pass filtered image. The high-pass
image is enhanced as given in the following equation:

&1lnigh(®,y), |Tnign(x,y)| <v

Tpign(x,y) =
high > {g2lhigh(xry)7 ‘Ihigh(X,y)|2V7

where g; and g4 are the two different gain coefficients and
v is the threshold value. Finally, low-pass and high-pass
images are added and limited by a limiting factor to ob-
tain the enhanced image.

In the AUM method, the local dynamic image is en-
hanced with respect to the local variance computed over
3 X 3 blocks. The gain is determined as
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Table 1. Mean Scores of the Observers®

Original AMLFC APHE BCLAHE-CE MAM AUM
Truthfulness 2.58 2.78 2.23 2.83 2.97 2.66
Target detail 2.37 3.07 1.73 2.90 3.02 2.55
Background detail 2.10 2.41 2.59 2.87 3.03 2.14
Artificiality 2.44 2.63 2.20 2.70 2.85 2.48
Total quality 2.48 2.82 2.19 2.85 2.95 2.56

“1: Bad, 2: Poor, 3: Fair, 4: Good, and 5: Excellent.

1, Vlxy<n
8(x,y) =\ Omic» T =V(x,y) <7y
5high7 V(xvy) =Ty,
where V is the local variance image and 6,,;q and &g are
gains satisfying the conditions Jpiq>1 and 1<dyg
< Omiq- The thresholds 7, and 7, are chosen depending on

the intensity distribution of the variance image. The en-
hanced image is computed as in Eq. (13),

Ienh(xyy) = 5(xay)lhigh(x:y)- (13)

First, the output of the linear UM algorithm (Iyyy) is com-
puted as

IUM(xyy) =I(x7y) + )\xlx(xay) +)\yly(x’y)’ (14)
where I, and I, are the directional outputs of the Laplac-

ian operator and A, and \, are the corresponding gains. In
the adaptation, the error between the I, and Iy is
minimized with respect to gains A, and \, using the
Gauss—Newton adaptation algorithm along the rows. The
resulting image Iy is taken as the enhanced image at
the end of the iterations.

B. Subjective Tests

In the subjective tests, a similar way like in the study [22]
is followed. 20 observers are asked to give points to the
five different images based on the five different criteria.
The criteria are the truthfulness of the image, detail vis-
ibility of the target and the background, unnatural arti-
facts, and total image quality. Each image appears ran-
domly three times in the sequence, where a total of 5
X 6 X 3=90 images are observed in a controlled office en-

(d) (e) (f)

Fig. 11. Comparison results: (a) original image and enhanced
images for (b) AMLFC, (¢) APHE, (d) BCLAHE-CE, (e) MAM, and
() AUM.

vironment. In the evaluation, no information is given to
the observers about the methods implemented and the
original image. In the implementation, the tunable vari-
ables are determined by many trials and set to constants
as they do not show large deviations for the images of
similar characteristics in our database. In the implemen-
tation of the AMLFC, apigy, is found to be 10 and ayg,
Bmids and Bhign are 0.5. For the BCLAHE-CE, yis taken as
20. For the MAM, g; and g4 are 3 and 2, respectively, and
v is set to 10. In the implementation of the AUM, the pa-
rameters are set as 71=200, =500, dy;g=5, and Spign=2.

The mean scores of the observers are given in Table 1.
In the evaluation, the AMLFC has taken the highest
point in the detail levels in the target. However, the slight
difference between the detail levels of the target and the
detail levels of the background due to the structure of the
gain matrices results in a decrease in the points given to
the truthfulness, background detail, and unnatural arti-
facts criteria. This affects the overall quality points given
to the enhanced image obtained using the AMLFC. In the
total quality, the MAM ranks first and the AMLFC and
BCLAHE-CE have comparable scores. The mean score for
the background detail is low for the AMLFC when com-
pared to the BCLAHE-CE and the MAM because the pro-
posed method suppresses the background clutter.

As an example, the results for an image evaluated in
the tests are given in Fig. 11. As seen in Fig. 11(b), the
AMLFC increases target details more when compared to
the other methods. In this example, the effect of the clus-
tering in the target enhancement can be clearly seen. The
target at the right in this image is in the target region ac-
cording to the clustering result whereas the target on the
left hand side is clustered as a sea region. So, due to the
gain matrices constructed depending on the clustering re-
sults, the edges and texture of the target at the right
hand side are enhanced and the details of the other target
are suppressed. We also note that the detail levels in the
background around the target are kept.

C. Quantitative Tests

In the quantitative comparison, the contrast of the target
is used as a performance metric. The contrast is computed
for the images in a selected area of size R XS including
the target using the formula in Eq. (15),

R-1S-1

> Uy -1?, (15)

x=0 y=0

1
contrast = —_—
RS
where I is the mean image in the selected region. The con-

trast results are given in Table 2 for the original and en-
hanced images. The best contrast is achieved using the
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Table 2. Contrast Results in the Target Region

Contrast
Original 50.70
AMLFC 65.56
APHE 64.27
BCLAHE-CE 64.58
MAM 43.90
AUM 53.56

AMLFC. The main reason for the high contrast value for
the APHE method is that the target saturates after the
enhancement. For this reason, the contrast metric is not
valid for this algorithm because the APHE has the lowest
score in the subjective tests. Although the MAM ranks
good in the target detail score in the subjective tests, the
contrast value is lower when compared to that of the AM-
LFC and BCLAHE-CE in the quantitative tests.

6. DISCUSSION AND CONCLUSION

In this study, we developed a novel IR image enhance-
ment method based on local frequency cues. We discussed
thoroughly the choice of algorithm parameters and
showed the effectiveness of the algorithm with real data.
Subjective and quantitative performance comparisons are
made for different IR image enhancement techniques.

Although we have concentrated on the enhancement of
specific targets, the results can be easily expanded to
other IR images consisting of more cluttered back-
grounds. For example, the sky may have broken clouds.
The algorithm can handle these cases by properly adjust-
ing the parameter c. As the clouds will have different tex-
tures when compared to a clear sky, sea surface, and sea-
surface targets, they can successfully be segmented and
beside targets, these broken clouds may also be enhanced.
The algorithm performance does not depend on the per-
fect segmentation of the IR scene. However, if ¢ is not cho-
sen properly and the broken clouds have a high frequency
distribution due to, for example, sun reflections, the algo-
rithm may find the sea-surface targets as a part of the
background and the sea-surface targets may not be en-
hanced properly.

The proposed algorithm is developed mainly to enhance
the sea-surface target images obtained for the sea surveil-
lance systems located on surface platforms. This imposes
a limitation on the camera view angle. As the viewing
angle and distance with respect to the sea-surface normal
change, for example, in sky monitoring or airborne imag-
ing applications, depending mainly on the sea-state, sun
position, and atmosphere conditions, the radiance of the
target and background will change. This will also affect
the frequency distribution of the target and background.
The proposed method may be extended to handle these
types of scenarios by adjusting the internal parameters of
the algorithm over large data sets.

In future studies, the parameters of the algorithm can
be optimized using synthetic images at different atmo-
spheric conditions, sea-surface reflections, and sea plat-
form models. A real time application of the proposed algo-
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rithm will also be considered. The proposed algorithm can
also be accompanied with the existing target detection
techniques in IR imaging systems to improve the process-
ing time.

We believe that the results of this study will be useful
for engineers and researchers designing IR imaging sys-
tems for sea-surface targets. While we have concentrated
on IR imaging in the longwave, the technique proposed
and compared with other methods in this paper may be
useful for other IR wavelength intervals and also in a vis-
ible band.
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