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a b s t r a c t

Most of the techniques developed for infrared (IR) image enhancement (IE) depend heavily on the scene,
environmental conditions, and the properties of the imaging system. So, with a set of predefined scenario
properties, a content-based IR-IE technique can be developed for better situational awareness. This study
proposes an adaptive IR-IE technique based on clustering of wavelet coefficients of an image for sea sur-
veillance systems. Discrete wavelet transform (DWT) of an image is computed and feature vectors are
constructed from subband images. Clustering operation is applied to group similar feature vectors that
belong to different scene components such as target or background. Depending on the feature vectors,
a weight is assigned to each cluster and these weights are used to compute gain matrices which are used
to multiply wavelet coefficients for the enhancement of the original image. Enhancement results are pre-
sented and a comparison of the performance of the proposed algorithm is given through subjective tests
with other well known frequency and histogram based enhancement techniques. The proposed algorithm
outperforms previous ones in the truthfulness, detail visibility of the target, artificiality, and total quality
criteria, while providing an acceptable computational load.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

An IR image of a sea-surface scene includes the effects due to
the sky reflections, sun glints, blackbody emissions from the wave
facets, and atmosphere [1], which decrease the visibility of the tar-
get details. Sensor noises and thermodynamic state of the targets
are also crucial for detection and identification of the targets in
the sea background or at the horizon. Therefore, for a better visu-
alization of high dynamic range (HDR) IR images containing sea-
surface targets, it is vital to develop IE techniques that increase
the contrast between the target and background as well as empha-
size target edges and texture.

Many of the surveillance systems such as IR search and track
systems require intruder detection, threat detection approaching
from sea or horizon, and better visualization of extended targets
for classification and identification purposes. Infrared IE is impor-
tant in these applications where enhanced target details give more
cues about the target type and increase situational awareness in
man-in-the-loop systems. The main motivation in developing con-
tent based IE technique is that the proposed solutions for enhance-
ment are case dependent and it is very difficult to develop an

enhancement technique working well under different conditions.
By intelligently developing algorithms and adjusting their internal
parameters for specific applications as in the sea surveillance case,
it is possible to develop more efficient enhancement techniques.

Application of the DWT for IE gives us an opportunity for
detecting anomalies in a scene with spatial information. By
extracting and examining these anomalies carefully, the scene
can be divided into regions and a spatially varying enhancement
of the image can be achieved. Target edges and texture can be
enhanced independent of the clutter and the noise in the back-
ground region. We propose an adaptive IR-IE technique based
on clustering of wavelet coefficients of the image for sea surveil-
lance systems. To the best of our knowledge, no attempt has
been previously made to develop an IR-IE technique in wavelet
domain specific for sea-surface targets and to compare its per-
formance with other enhancement methods. We show through
subjective tests that it performs well in the truthfulness, detail
visibility of the target, artificiality, and total quality criteria when
compared to other histogram and frequency based enhancement
methods.

This paper is organized as follows: Section 2 provides a brief re-
view about IR-IE techniques. In Section 3, the proposed algorithm
is explained. Experimental results with a detailed discussion of
the effects of the algorithm parameters on the performance are
provided in Section 4. Subjective comparisons and computational
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cost of the algorithms are presented in Section 5. Concluding
remarks are made and directions for future research are provided
in the last section.

2. Related work

Image enhancement techniques are generally divided into four
categories, which are amplitude scaling, histogram modification,
noise removal, and edge enhancement [2]. Local area processing
method based on histogram shaping and adaptive Wiener filtering
for noise removal are used together for contrast enhancement in
[3]. In [4], edges are enhanced by adaptive thresholding using er-
ror-diffusion algorithm. The authors implemented a spatiotempo-
ral homomorphic filtering technique using a qualitative model
for the far IR scenes in [5,6]. Infrared images are enhanced using
autoregressive moving average filter and H1 bounds in [7]. In [8],
anomalous frequency is detected using Fourier transform along
the column in image block and inverse Fourier transform is applied
to the thresholded frequency for enhancement. Balanced contrast
limited adaptive histogram equalization and contrast enhance-
ment (BCLAHE-CE) techniques are used together for improved
visualization of IR images in [9]. Evaluation is performed through
subjective analysis based on human observers. It outperforms his-
togram equalization, Fattal’s method [10], and retinex algorithm
[11] in the subjective tests. In [12], bilateral filter is used for the dy-
namic range compression of IR HDR images and the proposed algo-
rithm is compared with histogram equalization and retinex
algorithms [11]. An adaptive contrast IR enhancement method is
proposed in [13] which uses a quantitative model and adaptive
plateau histogram equalization. For long range IR surveillance pur-
poses, adaptive histogram equalization and high-boost filters are
used together in [14]. For the same purpose, hit-or-miss transform
based morphological approach is proposed in [15]. Multiscale top-
hat transform is used in contrast enhancement in [16] and the per-
formance is compared with histogram and morphological based
approaches using fuzziness index for sea and sky backgrounds.
IR-IE based on human visual system is proposed in [17] using mul-
tifractal theory. A novel unsharp masking algorithm is presented in
[18], where contrast and sharpness are controlled by the user and
halo effects are reduced using edge-preserving filters. In [19], after
constrained histogram equalization, unsharp masking is applied
for contrast and edge enhancement.

The wavelet transform has been widely used for texture seg-
mentation [20] and face [21], fingerprint [22], and mammogram
enhancement [23]. In [24], a wavelet-based dynamic range com-
pression algorithm is proposed for aerial images. Wavelet based
histogram equalization method is developed in [25]. Directional
wavelets and image gradients are used together in [26]. A two-
stage IR-IE technique based on local and global contrast enhance-
ment is proposed in [27]. The authors first enhance global contrast
by adaptive plateau histogram equalization and then use adaptive
gain control based on wavelet transform for local contrast
enhancement. In [28], an adaptive contrast enhancement method
based on wavelet transform is proposed. At each sublevel, horizon-
tal and vertical images are added and zero-crossing points are
found that are close to the segmented regions. At each scale, the
boundary map is blurred with a Gaussian filter. This map is used
as a weight in the enhancement of horizontal, vertical, and diago-
nal subband images. Discrete stationary wavelet transform is used
with genetic algorithm for typhoon cloud IE in [29].

In our previous work [30], we proposed an adaptive enhance-
ment method based on local frequency cues (AEMLFC) for sea-sur-
face targets. The image is transformed blockwise into Fourier
domain and clustering is done according to the number of ex-
pected regions to be enhanced in the scene. Based on the variations

of the elements in any cluster and the differences between the
cluster centers in frequency domain, two gain matrices are com-
puted for mid and high frequency components of the image which
are used in the construction of the enhanced image. We showed
through subjective and quantitative tests that it performs well
for the detail visibility in the target region when compared to his-
togram [9,27,31] and unsharp masking based methods [32]. In this
study, we develop an adaptive enhancement method based on
clustering of wavelet coefficients (AEMCWC). The work is different
from [30] in a way that the proposed approach clusters wavelet
coefficients to find regions to be enhanced and uses the relation be-
tween the subband images to find gains used in the reconstruction
step. Another difference is that both clustering and enhancement
operations are implemented in the wavelet domain, which makes
the proposed method more robust when compared to that in our
previous work where operations are implemented both in the spa-
tial and frequency domain.

3. Image enhancement by clustering of wavelet coefficients

An example IR image taken from a ground based sea surveil-
lance system and its histogram are shown in Fig. 1a and b, respec-
tively. As shown in Fig. 1b, the histogram has a two modal
distribution, where the first and second parts correspond to the
background, i.e., sea and sky region, respectively. These two parts
have intensity values ranging approximately between
[16,000,17,000] and [17,000,17,600], respectively. A typical scene
consists of sea surface with wave glints, sky with gradual distribu-
tion, small islands, and targets. Wavelet coefficients are used to de-
tect these scene components and discriminate the target from the
background. Our aim is to enhance the image by multiplying the
wavelet coefficients with gain factors without introducing arti-
facts. The summary of the proposed algorithm, which is detailed
in the following sections, is given in Table 1.

Fig. 1. (a) Sample image and (b) its histogram.
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3.1. Discrete wavelet transform

The main idea behind DWT is to split a signal into components
according to the frequency spectrum of the signal while preserving
its spatial structure. For instance, DWT splits a signal into two
parts, the low and high frequency components. The edges in the
signal are generally confined in the high frequency part. The low
frequency part is then split into two parts again and again until
the signal is entirely decomposed or the desired level of decompo-
sition is obtained. The original signal can be obtained from the
decomposition outputs and this process is called inverse DWT
(IDWT).

A signal X(n) can be decomposed into its low and high fre-
quency components as follows:

flowðmÞ ¼
X

n

gð2m� nÞ � XðnÞ; ð1Þ

fhighðmÞ ¼
X

n

hð2m� nÞ � XðnÞ: ð2Þ

The low pass (g) and high pass (h) filters satisfy the condition
g[N � 1 � n] = (�1)n�h(n) for the orthogonal quadrature mirror fil-
ter banks, where N is the filter length. flow and fhigh are the approx-
imation and detail coefficients of the image, respectively.
Furthermore, the IDWT is obtained by recursively obtaining the
low frequency components as follows:

XðnÞ ¼
X

m

g0ð2m� nÞ � flowðmÞ þ
X

m

h0ð2m� nÞ � fhighðmÞ; ð3Þ

where g0 and h0 are the reconstruction filters.
The two-dimensional (2-D) DWT or IDWT for an image is de-

fined similarly by evaluating the one-dimensional DWT or IDWT
for each dimension separately. One level decomposition and recon-
struction along the rows and columns are given in Fig. 2. The sub-
band images at different levels are obtained by applying the same
procedure to the approximation image (ILL) successively. The sub-
band images ILH, IHL, and IHH represent the vertical, horizontal,
and diagonal details, respectively.

3.2. Clustering in wavelet domain

In this work, P levels of wavelet coefficients of the HDR IR image
are computed. P should be determined with respect to the frame
size of the imaging system and the total number of pixels that
the target spans. For the sample image given in Fig. 1a, the subband
images can be seen in Fig. 3 at different decomposition levels k,
ranging from 1 to P. As seen in the figure, vertical ILH

k

� �
and diag-

onal IHH
k

� �
details reveal the boundaries of the extended target

edges, whereas edges in the sea surface and the horizon can be
seen clearly in the horizontal details IHL

k

� �
. Region pyramids are de-

fined over these k levels of wavelet coefficients and a feature vector
is defined for each region pyramid. Entries of the feature vector are
computed from the wavelet coefficients that are inside the regions
of the corresponding region pyramid. Similar feature vectors are
grouped to differentiate scene components such as target and
background.

First of all, the P levels wavelet coefficients of the image are
evaluated and normalized wavelet coefficients are obtained using
below equation:

Is
kðx; yÞ ¼

Is
kðx; yÞ
�� ��P

x

P
y Is

kðx; yÞ
�� �� ; ð4Þ

where Is
kðx; yÞ represents the normalized wavelet coefficient of the

kth level subband image at the indices x and y and s denotes the
type of the subband image and is a member of the set {LL, LH, HL,
HH}.

Secondly, region pyramids are computed for each pixel of the
Pth level approximation image. The idea behind the region pyra-
mid is that each wavelet coefficient in the kth level subband image
is computed as a linear combination of wavelet coefficients inside a
region in the (k � 1)st level approximation image. This region is de-
noted as Rk�1. So, for a single pixel in the Pth level approximation
image, we can compute a region pyramid as seen in Fig. 4. In this
figure, center coordinates of Rl are defined as xl and yl; width and
height of the region Rl are defined as wl and hl, where l takes the
values {P � 1, . . . ,1}. Calculation of the parameters of each region
in the pyramid that is defined for the pixel at (x, y) of ILL

P is done
by using following equations:

wl ¼ 2 �wlþ1 þ N � 2; ð5Þ
hl ¼ 2 � hlþ1 þ N � 2; ð6Þ

xl ¼ 2 � xlþ1 �
N
2
þ 1; ð7Þ

yl ¼ 2 � ylþ1 �
N
2
þ 1: ð8Þ

where N is the size of the wavelet filter. Parameters of regions in the
pyramid are calculated step by step as l goes from P �1 to 1. For
l = P, wP and hP are equal to 1. Calculation is completed when the
parameters of R1 are computed and a region pyramid that consists
of P layers is obtained for all (x, y) in the Pth level approximation
image.

At the next step, a feature vector F is constructed for each region
pyramid which consists of 3P + 1 entries. The first entry of this vec-
tor, f1 is the corresponding normalized wavelet coefficient evalu-
ated using the Pth level approximation image. The remaining
elements of this vector is evaluated by the following equations:

f3mþ2 ¼
1

wP�m � hP�m

X
ðx;yÞ2RP�m

ILH
P�mðx; yÞ; ð9Þ

f3mþ3 ¼
1

wP�m � hP�m

X
ðx;yÞ2RP�m

IHL
P�mðx; yÞ; ð10Þ

f3mþ4 ¼
1

wP�m � hP�m

X
ðx;yÞ2RP�m

IHH
P�mðx; yÞ; ð11Þ

Fig. 2. One level wavelet decomposition and reconstruction.

Table 1
Summary of the proposed method.

Step 1 Decompose the original image by DWT
Step 2 Cluster wavelet coefficients to group similar feature vectors
Step 3 Assign weights to each cluster and compute weight matrices
Step 4 Compute gain matrices from the weight matrices
Step 5 Multiply each subband image with the appropriate gain matrix
Step 6 Reconstruct the new wavelet coefficients by IDWT to obtain

enhanced image
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where m takes values ranging from 0 to P � 1. As seen from the
equations above, the entries of the feature vectors are the average
of the appropriate set of wavelet coefficients. Four feature vectors
computed from four level of wavelet coefficients corresponding to
the labeled parts in Fig. 5 are shown in Fig. 6. It can be clearly seen
that the four components of the scene have different attributes. This
fact is our main motivation in clustering these feature vectors and
defining possible target and background regions for further
enhancement.

Because the feature vectors are computed for each pixel of the
Pth level approximation image of size AP by BP, we have AP � BP fea-
ture vectors. The next step is to cluster these vectors. Hierarchical
cluster tree is obtained using the distances in between the feature
vectors and clustering is done with respect to the nearest distance
[33]. The distance between two feature vectors is defined as:

d2
rs ¼ ðFr � FsÞðFr � FsÞT ; ð12Þ

where r and s are integers changing from one to AP � BP.
For each cluster, more than one centroid may be computed and

different weights may be assigned to centroids in each cluster. In
our trials, this does not make great difference when compared to
assigning weights to a single cluster centroid. Therefore, cluster
centers are computed by averaging the elements of each cluster
and a weight is calculated for each cluster center. ith entry of each
cluster center is normalized with respect to the minimum value of
ith entry of all cluster centers and proportional cluster centers (PCC
vectors) are obtained as below:

PCCoðiÞ ¼
CCoðiÞ

min½CC1ðiÞ CC2ðiÞ . . . CCcðiÞ �
; ð13Þ

Fig. 3. Four level subband images obtained by Daubechies-3 wavelet filters for the sample image shown in Fig. 1a.

Fig. 4. Regions RP�1 and RP�2 used in extraction of feature vectors.

A.O. Karalı et al. / Infrared Physics & Technology 54 (2011) 382–394 385
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where CCo is the oth cluster center and i is changing from 1 to
3P + 1. Computed CC and PCC vectors for the image given in
Fig. 1a can be seen in Fig. 8. Difference between the CC and PCC
can be observed clearly, especially at the latter entries of the cluster
centers.

Finally, weights assigned to each cluster, ko are obtained by
computing the mean value of the proportional cluster center as gi-
ven in Eq. (14).

ko ¼
1

3P þ 1

X3Pþ1

i¼1

PCCoðiÞ: ð14Þ

Weight matrices are constructed using these weights, which will be
explained in more detail in the following subsection.

3.3. Enhancement

In the enhancement step, first of all, we define a weight matrix
KP of size AP � BP which is determined using the weights ko ex-
plained in the previous section. For each element of KP, a region
pyramid is defined as in Section 3.2 over this weight matrix pyra-
mid and the entries inside the volume defined by this region pyr-
amid are set as the value of the corresponding entry of KP. At the
sections where two or more region pyramids, defined for the
neighboring elements of KP, overlap, average values of the neigh-
boring elements are assigned to the values of elements in these
regions.

Weight matrices computed for each level of the image given in
Fig. 1a can be seen in Fig. 9. As seen from this figure, there are
peaks in the target regions which give us the ratio between the
gain coefficients defined for each scene component. This ratio al-
lows us to enhance the details in the image with different gain
coefficients depending on the spatial position. Also, by defining a
weight matrix for each of the Pth level subband images, we have
the ability to define different gain coefficients for the different de-
tail levels, i.e. different frequency components, even if they are spa-
tially overlapping.

3.3.1. Gain matrix generation
Weight matrices give us cues about the position of the target

and the ratios of the inter-cluster gain coefficient distribution.
However, we can not directly apply each weight matrix as a gain
because target enhancement, noise removal, and background sup-
pression issues require carefully selection of the gain coefficients.
So, for each level of the wavelet coefficient, weight matrices of
the corresponding level are mapped to different ranges by the fol-
lowing mapping operation:

Gk ¼
ðKk �minðKkÞÞak

ðmaxðKkÞ �minðKkÞÞ
þ bk; ð15Þ

where Gk is the gain matrix, ak defines the dynamic range of the
gain coefficient, and bk is the offset for the kth level. For obtaining
smooth transition between detail levels of the target and back-
ground regions in the boundaries, a low pass filtering operation
over first and second level gain matrices is required. This operation
reduces the artificiality of the enhanced image by providing smooth
gain coefficient distribution in the boundary regions. An averaging
filter is applied for this purpose in our algorithm.

Fig. 5. Sample IR scene. Blocks indicate different scene components: (a) sea, (b) sky,
(c) target, and (d) target-sea transition.

Fig. 6. Feature vectors for the different scene components seen in Fig. 5.

Fig. 7. Clusters found for c = 5.

Fig. 8. (a) Cluster centers and (b) proportional cluster centers.
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3.3.2. Image enhancement and reconstruction
After the construction of the gain matrices, kth level horizon-

tal, vertical, and diagonal wavelet coefficients are elementwise
multiplied with the Gk to obtain the enhanced coefficients, while
approximation coefficients are kept at their original values. En-
hanced HDR image is obtained by taking the IDWT of these coef-
ficients. In order to show the original image on the display, a
linear mapping function is defined to represent it in 0–255 range
and the same mapping function is applied to the enhanced im-
age to display it on the screen. Note that during this mapping,
the values outside the 0–255 range are clipped.

4. Experimental results

In this section, we introduce the experimental setup used in
obtaining the images, discuss thoroughly the choice of the param-
eters of the proposed algorithm, and present enhancement results.

Sample images examined in this work are obtained at field trials
using two long-wave IR cameras working in 8 � 12 lm range. The
image sizes extracted from the cameras are [136,272] and
[240,320] and the camera is located on ground to observe the
scene. Different scenarios include images containing single or mul-
tiple targets, targets located at different ranges and orientations,
and recorded at different daytimes.

We use Daubechies-3 wavelet filters in computing wavelet
coefficients. Four level of wavelet coefficients are found to be suit-
able in our case to extract sufficient number of feature vectors that
have enough discrimination property. A 10 � 10 averaging filter is
selected for smoothing gain matrices. The filter should be suffi-
ciently large to smooth the transitions between the gain matrices

and small enough not to remove cluster weights with smaller
areas.

Expected number of scene components should be set as the
minimum value that the number of maximum clusters c can take.
Result of the clustering operation for the sample image given in
Fig. 1a, when c is set as 5, can be seen in Fig. 7.

Effect of noise and clutter on wavelet coefficients can be seen in
Fig. 3 and from this figure it can be inferred that overenhancement
of the first level wavelet coefficients increases the noise level in the
background and overenhancement of the second level wavelet
coefficients will result in more apparent wave glints in the scene.

The parameters ak and bk adjust the variation of the gain coef-
ficients in between target and background regions for the kth level
horizontal, vertical, and diagonal wavelet coefficients. a3 and a4 are
set as 0.1 and b3 and b4 are set as one throughout this work be-
cause the third and fourth level wavelet coefficients result in satu-
ration in the target region and artifacts appear in the background
when they are multiplied with high values.

a3, a4, b3, and b4 are kept constant throughout trials and slight
contrast enhancement is aimed for not saturating the target region.
Selection of the parameters a1, a2, b1, and b2 has more effect on the
enhancement and is discussed in detail in the experimental study
section.

We examine the selection of a1, a2, b1, and b2 parameters and
see the effect of each parameter on the enhancement of the target
region. When a1 is selected to be high, target edges and details are
enhanced as well as the noise in the target region. However, if a1 is
selected to be more than 10, details become saturated and artifici-
ality of the image increases due to the high detail level visibility
difference between the target and background regions. The effect
of the selection of a1 on the image can be seen clearly in Fig. 10

Fig. 9. Weight matrices for the (a) first, (b) second, (c) third, and (d) fourth level subband images.

A.O. Karalı et al. / Infrared Physics & Technology 54 (2011) 382–394 387
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for the values of a1 = 0, a1 = 5, and a1 = 10. The parameter a2 de-
fines the range of values that G2 will take in case we have a prede-
fined offset value b2. This parameter defines how much the 2nd
level horizontal, vertical, and diagonal wavelet coefficients in the
target region will be enhanced. Results obtained for different val-
ues of a2 are shown in Fig. 11. Overenhancement of the second le-
vel wavelet coefficients results in halo effects around the target
and wave glints around the target region become more apparent
where artificiality of the image increases.

As explained before, b1 is the offset value for the G1 and selec-
tion of the parameter b1 has effect on the first level detail visibility
of the background region. It is selected to be one for the enhance-
ment results given in Fig. 10 to have no enhancement or suppres-
sion in the background. In Fig. 12, change in the background detail
visibility for different values of b1 is shown. As mentioned before,
2nd level detail coefficients consist of wave glints and broken
clouds in the background region and selection of b2 affects the vis-
ibility of these scene components. Fig. 13 represents the effects of
b2 on the enhancement results.

Selection of the parameter c has effect on the enhancement re-
sult since spatial variation of the gain coefficients depends on the
regions obtained by clustering operation. Setting the value of c less
than 4 usually results in overlapping of target regions with back-
ground so undesired enhancement or suppression occurs. Increas-
ing the value of c usually divides the target region into more
clusters and smoother transition is achieved from target to back-
ground regions by introducing more transition clusters while there
is a slight increase in the computation cost. The effect of c on the
enhancement results is presented in Fig. 14.

Effect of each parameter on the enhancement result is exam-
ined and best results are obtained for the values of a1, a2, b1, b2,
and c to be 4, 1, 1, 1.5, and 20, respectively. With these parameter

values, the enhancement results for the different sea surface sce-
narios are shown in Fig. 15. Results show that the visibility of tar-
get edges and texture are enhanced significantly while keeping the
noise and clutter in the scene at an acceptable level.

5. Comparative analysis

In this section, the performance and computational cost of the
proposed method is compared with other well known techniques.
The compared algorithms are selected as AEMLFC, BCLAHE-CE,
method of A are Mällo (MAM) [31], and a wavelet based enhan-
cement method (WEM) [34]. The first three methods are chosen
because they perform well in the subjective comparisons in our
earlier work [30]. The last method is chosen for a fair comparison
of the proposed method with another wavelet based method.

The parameters used for the algorithms AEMLFC, BCLAHE-CE,
and MAM are explained in detail in [30]. In the WEM, the magni-
tude of the horizontal and vertical subband images are computed
at each pixel position as given below:

Mðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ILH
1 ðx; yÞ

� �2
þ IHL

1 ðx; yÞ
� �2

r
: ð16Þ

If this value is greater than a threshold value (c in Eq. (17)), this pix-
el value is not enhanced to avoid overenhancement. Depending on
the M value, pixel values at the horizontal and vertical details are
multiplied with different gains and enhanced image is obtained
with the reconstruction of the new horizontal and vertical subband
images.

Is
1ðx; yÞ ¼

c
n

� �pIs
1ðx; yÞ; Mðx; yÞ 6 n;

c
Mðx;yÞ

� �p
Is
1ðx; yÞ; n < Mðx; yÞ 6 c;

Is
1ðx; yÞ; Mðx; yÞ > c:

8>><
>>:

ð17Þ

Fig. 10. (a) Original image and enhancement results (a2 = 0, b1 = 1, and b2 = 1) for: (b) a1 = 0, (c) a1 = 5, and (d) a1 = 10.
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Fig. 11. (a) Original image and enhancement results (a1 = 0, b1 = 0, and b2 = 1) for: (b) a2 = 1, (c) a2 = 3, and (d) a2 = 5.

Fig. 12. (a) Original image and enhancement results (a1 = 0, a2 = 0, and b2 = 1) for: (b) b1 = 0.5, (c) b1 = 2, and (d) b1 = 4.
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Fig. 13. (a) Original image and enhancement results (a1 = 0, a2 = 0, and b1 = 1) for: (b) b2 = 0.5, (c) b2 = 2, and (d) b2 = 4.

Fig. 14. (a) Original image and enhancement results (a1 = 4, a2 = 1, b1 = 1, and b2 = 1.5) for: (b) c = 5, (c) c = 10, and (d) c = 20.
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Here, p determines the degree of nonlinearity, n is the noise related
parameter, and s is a member of the set {LH, HL}. Enhancement re-
sults obtained for each algorithm with the original image are given
in Figs. 16 and 17, for the image sizes of [136,272] and [240,320],
respectively. Results show that global contrast enhancement algo-
rithms increase the clutter and noise levels in the background re-
gions and target detail enhancement is limited to avoid this fact.
As seen in Figs. 16e and 17e, AEMCWC increases target details more
with less concerns about the clutter and noise when compared to
the other methods.

5.1. Subjective tests

In the subjective tests, a similar way like in the study [9] is
followed. Twenty observers (12 men and 8 women) having an

average age of 28.5 and at least undergraduate degrees are asked
to give points to the five different images based on the five differ-
ent criteria. The criteria are the truthfulness of the image, detail
visibility of the target and the background, unnatural artifacts,
and total image quality. Each image appears randomly three times
in the sequence, where a total of 5 � 6 � 3 = 90 images are ob-
served in a controlled office environment. In the evaluation, no
information is given to the observers about the methods imple-
mented and the original image. In the implementation, the tunable
variables are determined by many trials and set to constants as
they do not significantly vary for the images of similar characteris-
tics in our database. In the implementation, the parameters of the
algorithms AEMLFC, BCLAHE-CE, and MAM are set as in [30]. In the
AEMCWC, number of cluster c is taken as 20 and other parameters
are set as a1 = 4, a2 = 1, a3 = 0.1, a4 = 0.1, b1 = 1, b2 = 1.5, b3 = 1, and

Fig. 15. Enhancement results for the different scenarios.
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b4 = 1. In the implementation of the WEM algorithm, p, n, and c are
taken as 0.5, 30, and 100.

Mean scores of the observers and associated 95% confidence
intervals are given in Table 2. In the evaluation, AEMCWC has ta-
ken the highest points in the truthfulness, detail level in the target,
in the artificiality, and in the total quality. The confidence intervals
for AEMCWC show that the scores do not diverge much from the
mean. In the background detail, BCLAHE-CE is slightly better than
AEMCWC. Greatest score difference is observed in the total quality
between the AEMCWC and other methods. AEMCWC provides tar-
get detail enhancement without introducing artificial effects as
seen in the subjective evaluations. The results are also consistent
with our previous work [30] where AEMLFC shows better perfor-
mance in the target detail when the proposed algorithm is ex-
cluded in the evaluation.

5.2. Computational cost of the algorithms

The average computational cost of the algorithms used in the
evaluations are given in Table 3 for the two different cameras.
The algorithms are implemented using MATLAB version 7.5 on a
Pentium PC with a Core 2 Quad CPU of 2.8 GHz and 3.25 GB Ram
running on Microsoft XP SP3 operating system. MAM is the fastest
algorithm among the methods compared with the average times of
0.02 and 0.03 s for the image sizes of [136,272] and [240,320],
respectively. WEM is the second fast algorithm. AEMCWC method
is better than AEMLFC in terms of operation speed. As the image
size changes from [136,272] to [240,320], the increase in the
processing time is dramatic in the AEMLFC and BCLAHE-CE. The

average processing time for AEMCWC is about 1.1 s and does not
show large variations as the size of the image increases.

6. Conclusions and future work

In this study, we proposed a content-based IR-IE method
based on clustering of wavelet coefficients. In IE, the proposed
solutions are case dependent; therefore it is very difficult to de-
velop an enhancement technique working well under different
conditions. We turn our attention to develop an enhancement
technique for sea-surveillance system. Enhancement result of
our method is compared with other IE techniques through sub-
jective tests. The proposed algorithm outperforms other promis-
ing algorithms in the truthfulness, detail visibility of the target,
artificiality, and total quality criteria in the subjective evalua-
tions. We also compared the computational cost of the algo-
rithms and found the processing time of the proposed method
fair enough for real time applications.

Although we have concentrated on the enhancement of sea sur-
face targets, the results can be easily expanded to other IR images
consisting of similar target and background region discrimination
in terms of wavelet coefficient distributions. Region based
enhancement proposed in this study gives the possibility of
enhancing IR images with less concerns about the enhancement
of background noise and clutter.

The parameters of the method should be refined for specific sce-
narios in the operational environment. The user can adjust these
parameters controlling truthfulness, target detail, background de-
tail, artificiality, and total quality criteria to achieve the desired

Fig. 16. Comparison results: (a) original image and enhanced images of size [136,272] for: (b) AEMLFC, (c) BCLAHE-CE, (d) MAM, (e) AEMCWC, and (f) WEM.
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enhancement in the practical application. In future studies, these
parameters can be optimized using synthetic images including dif-
ferent sea platform models captured at different atmospheric con-
ditions and sea surface reflections.

The proposed algorithm can also be accompanied with the
existing wavelet-based target detection techniques in IR imaging

systems. While we have concentrated on IR imaging in longwave,
the technique proposed and compared with other methods in this
paper may be useful for other IR wavelength intervals and also in
visible band with the necessary tuning of the parameters. We also
plan to implement the proposed algorithm in hardware using field
programmable gate arrays for real-time processing.

Fig. 17. Comparison results: (a) original image and enhanced images of size [240,320] for: (b) AEMLFC, (c) BCLAHE-CE, (d) MAM, (e) AEMCWC, and (f) WEM.

Table 2
Mean scores and 95% confidence intervals (in the brackets) of the observers (1: bad, 2: poor, 3: fair, 4: good, and 5: excellent).

Original image AEMLFC BCLAHE-CE MAM AEMCWC WEM

Truthfulness 2.63 [2.54,2.72] 2.87 [2.77,2.96] 2.62 [2.51,2.72] 3.01 [2.91,3.11] 3.17 [3.07,3.28] 2.87 [2.78,2.96]
Target detail 2.21 [2.11,2.32] 3.21 [3.10,3.32] 2.74 [2.60,2.87] 3.01 [2.89,3.13] 3.34 [3.22,3.47] 2.59 [2.47,2.71]
Background detail 2.26 [2.17,2.35] 2.51 [2.40,2.61] 3.08 [2.96,3.20] 2.90 [2.79,3.01] 2.92 [2.81,3.03] 2.53 [2.43,2.63]
Artificiality 2.61 [2.51,2.71] 2.82 [2.72,2.91] 2.56 [2.45,2.66] 2.96 [2.86,3.06] 3.05 [2.95,3.16] 2.80 [2.70,2.89]
Total quality 2.41 [2.32,2.50] 2.90 [2.81,2.99] 2.69 [2.58,2.79] 3.01 [3.00,3.02] 3.21 [3.11,3.31] 2.75 [2.65,2.84]
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