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Infrared (IR) cameras are widely used in the latest surveillance systems because spectral characteristics of objects
provide valuable information for object detection and identification. To assist the surveillance system operator
and automatic image processing tasks, fusing images in the IR band was performed as a solution to increase
situational awareness and different fusion techniques were developed for this purpose. Proposed techniques
are generally developed for specific scenarios because image content may vary dramatically depending on the
spectral range, the optical properties of the cameras, the spectral characteristics of the scene, and the spatial res-
olution of the interested targets in the scene. In this study, a general purpose IR image fusion technique that is
suitable for real-time applications is proposed. The proposed technique can support different scenarios by apply-
ing a multiscale detail detection and can be applied to images captured from different spectral regions of the
spectrum by adaptively adjusting the contrast direction through cross-checking between the source images.
The feasibility of the proposed algorithm is demonstrated on registered multispectral [mid-wave IR (MWIR),
long-wave IR (LWIR)] and LWIR multifocus images. Fusion results are presented and the performance of
the proposed technique is compared with the baseline fusion methods through objective and subjective tests.
The technique outperforms baseline methods in the subjective tests and provide promising results in objective
quality metrics with an acceptable computational load. In addition, the proposed technique preserves object de-
tails and prevents undesired artifacts better than the baseline techniques in the image fusion scenario that contains
four source images. © 2015 Optical Society of America

OCIS codes: (100.0100) Image processing; (100.2000) Digital image processing; (100.2960) Image analysis; (100.2980) Image

enhancement; (110.3080) Infrared imaging.
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1. INTRODUCTION

Image fusion is the process of generating a highly descriptive
single image from the input images captured at different
sources, sensors, or wavelengths [1]. Image fusion frameworks
can be divided into three main categories as “pixel (signal)
level,” “feature level,” and “decision (symbol) level” fusion
frameworks [2]. Pixel-level fusion is the lowest level of image
fusion techniques dealing with the pixels obtained at the sensor
directly and tries to improve the visual enhancement. One of
the main advantages of the pixel-level schemes is their low com-
putational complexity and easy implementation. But some of
the pixel-based techniques are very sensitive to misregistration
and suffer from blurring artifacts. Region-based methods are
proposed to overcome this problem but region-based schemes
are affected by the similar artifacts occurring especially near the
edges of image subblocks [3]. In the feature-level fusion

techniques, the fusion process is carried out in the form of
feature descriptors. Feature-level algorithms typically perform
fusion by extracting various types of features, such as regions
or edges from the source images. Although feature-level fusion
is usually robust to noise and misregistration, the pixel-level
fusion retains more information from the source images com-
pared to feature-level techniques [4]. The decision-level fusion
scheme operates on the highest level, and refers to blending
different discriminated results in the decision-making stage
in accordance with the given fusion rules [5]. Decision-level
fusion also loses some source image information in the fusion
process. Therefore, pixel-level fusion schemes are more advan-
tageous due to their low computational complexity, easy imple-
mentation, and less loss of information in the fusion process
compared to feature- and decision-level fusion frameworks.

Fusion techniques are applied in various application areas,
such as aided surveillance, multispectral imaging, medical
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imaging, and target detection and tracking. Especially in a sur-
veillance system, an efficient fusion technique can increase the
operator awareness and the success rate of the target detection
and tracking algorithms. Infrared (IR) imaging systems in a
surveillance system have the capability of separating the fore-
ground objects from the background with respect to their
temperature and emissivity characteristics. However, due to
low-resolution sensor arrays and possible absence of autofocus
lens capabilities, high-frequency content of the objects is mostly
missing. Rapid developments in the imaging technology and
the availability of affordable devices in the market enable to use
more than one imaging system for the applications mentioned
herein. Consequently, in the modern surveillance systems,
multiple cameras operating at different spectral ranges [mid-
wave IR (MWIR) and long-wave IR (LWIR)] are used as a
solution to overcome these difficulties [6,7].

In this study, a pixel-level image fusion technique, foretold
to be computationally efficient and less lossy in terms of infor-
mation, is proposed for the IR image fusion problem. The pro-
posed technique is not only suitable for IR images but also
applicable to a wide range of image types that are single channel
and registered. In order to eliminate the undesired artifacts and
obtain a descriptive fused image, a Laplacian of Gaussian (LoG)
pyramid is constructed for multiscale edge detection and
detected edges are fused by weighted averaging scheme. The
weights for edge fusion are computed using a local discrimina-
tion metric by considering both interimage and intraimage
region characteristics, and the direction of the weights are
adapted to avoid suppression. Finally, adaptive unsharp mask-
ing is applied to enhance the visibility of the edges in the fused
image. The proposed technique is suitable for real-time appli-
cations and also robust to content changes that may arise in
the scene.

This paper is organized as follows: Section 2 provides a brief
review about image fusion techniques. In Section 3, the pro-
posed algorithm is explained. Experimental results are provided
in Section 4. Comparisons including subjective test and quan-
titative fusion metrics, are presented in the same section.
Concluding remarks are made and directions for future research
are provided in the last section.

2. RELATED WORK ON IMAGE FUSION

The simplest method applied in image fusion is the averaging
technique where pixel by pixel averages of the images are
combined into a single image. This technique can result in
suppression of edges and scene components due to the object
emissivity characteristics. Direction of the contrast between
foreground and background objects can vary between IR and
visual band images, and fusion of low-pass image components
may result in suppressed foreground objects. In addition, the
human visual system is more sensitive to high-frequency com-
ponents such as edges [8]. Frequency content of the scene
components may vary with respect to spatial resolution of the
imaging system, distance of the object from the camera system,
level of background clutter, and included sensor and read-out
circuit noises. Because of these variances, image pyramids,
which are multiscale representations of the images, are pro-
posed for decomposing the image into components that consist

of different spatial frequencies [9]. Image pyramids-based tech-
niques are frequently used in fusion [10–12]. In the pyramid
approach, a set of bandpass filters is used to decompose scene
components into groups that have different frequency charac-
teristics. Burt [10] proposed an image fusion schema based on
difference of low-pass pyramid. The Laplacian pyramid used in
Burt’s technique is obtained as the difference of the successive
images in the Gaussian image pyramid. A pixel by pixel fusion
is applied at Laplacian images of different levels with respect to
pixel absolute values. A similar approach is adapted in [11]
where pixel-level fusion is applied on Laplacian values of the
image by choosing the directional absolute maximum values.
Resultant images are reconstructed from fused Laplacian pyra-
mids. Toet [12] proposed a similar technique where the image
pyramid is constructed using the ratio of low-pass pyramid and
fusion is achieved by comparing the ratio of successive Gaussian
pyramid images because the human visual system is sensitive to
local luminance contrast.

Discrete wavelet transform (DWT) is another technique fre-
quently used in image fusion [13,14]. Traditionally, DWT can
be used to create multiscale image representation and fusion
can be accomplished by selection of salient wavelet coefficients
and inverse DWT operation is applied on the fused wavelet
coefficients. In the case of fusion of image sequences, to avoid
flicker, Rockinger [15] proposed a method based on shift-
invariant wavelet sequences. Ramac et al. [16] proposed a
composite wavelet coefficient fusion technique that depends
on the similarity of the image pairs at that location.
Morphological filters are used to clean the image before wavelet
decomposition and the averaging technique is used for similar
locations whereas coefficients from the more salient region are
copied when the regions are not similar. Petrovic et al. [17]
proposed a wavelet-based fusion technique that is based on
a “fuse-then-decompose” approach. Instead of traditional
intensity-based multiscale fusion algorithms, Zheng et al. [18]
proposed an undecimated transform-based approach that com-
putes the support value transform of the input images to better
define salient features as support values for each pixel and ap-
plied multiscale fusion procedure over these values. Zhenfeng
et al. [19] performed a discrete curvelet transform-based
approach to obtain the coefficient subbands in different scales
and orientations. Then, they extracted focus measure values to
perform a weighting strategy to fuse the low- and high-
frequency components of the visible and infrared images.

Segmentation operation can also be used before multiscale
representation for region-based parameter detection. Drajic
and Cvejic [20] proposed a modified version of region-based
dual-tree complex wavelet transform to create both region seg-
ments and multiscale representation of the images. Then, an
algorithm is applied to determine which image region will
be used for fusion operation based on their structural similarity
measure [21]. To evaluate the performance of the region-based
image fusion techniques, Cvejic and Seppanen et al. [22]
defined a metric based on the similarities of the regions in the
input images and the fused image by using contrast, size, and
shape information.

Nonlinear mapping of salient features other than averaging
is also used for image fusion. Xu et al. [23] proposed an
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algorithm that uses Markov random field as a decision tool for
fusion which can be applied both in multiscale and traditional
single-scale approaches. We also proposed a pixel-level image
fusion technique based on score assignment depending on local
intensity variation in [24].

After fusion operation, artifacts such as destructive superpo-
sition and halo effects due to spectral operations appear in the
resulting image. Ben-Shoshan and Yitzhaky [25] proposed a
mask-based polarity adaptation of image pairs to avoid destruc-
tive superposition. Image fusion can also be used for enhance-
ment. Xia and Kamel [26] proposed a cooperative neural fusion
algorithm to enhance the restored images under blind Gaussian
noise environment. They fused images as a linear combination
of input images where scaling coefficients are obtained through
the proposed neural fusion algorithm.

Kumar and Dass [27] proposed a pixel-level fusion tech-
nique using the total variation-based approach together with
a principal component analysis technique.

3. CONTRAST DIRECTION ADAPTIVE IMAGE
FUSION

In the proposed contrast direction adaptive fusion technique, to
handle different scene object and background characteristics, an
LoG pyramid is constructed to create a multiscale image rep-
resentation. After the pyramid is constructed, for each level of
the LoG pyramid, pixel-wise weighting coefficients and the
pixel polarity reversion masks are computed using intraimage
and interimage features. Finally, using these weighting coeffi-
cients, LoG image fusion, multiscale reconstruction, and adap-
tive unsharp masking operations are carried out. Details of each
step are explained in the following subsections.

A. LoG Pyramid Construction
In the construction of the image pyramid, Laplacian pyramid-
based multiscale decomposition is used since shift invariance
property of Laplacian-based techniques is more advantageous
than traditional wavelet-based techniques, as indicated by
Rockinger et al. [15]. First, n levels of a Gaussian image pyra-
mid is constructed using Burt’s approach described in [9]. A
sample image pyramid for a registered visual and LWIR band
image pair can be seen in Fig. 1. After the Gaussian pyramid is
constructed, an LoG pyramid is obtained by computing each
pyramid layer as the difference of consecutive Gaussian pyra-
mid layers, as given in Eq. (1):

Li � Gi − �2⇑��Gi�1�; i � 0;…; n − 2; (1)

where n is the level of the Gaussian pyramid, G0 is the original
input image, and �2⇑� denotes resize operator. During �2⇑� op-
eration, bilinear interpolation is used in order to resize Gi�1 to
the size of the lower pyramid level Gi. A sample LoG pyramid
constructed from the Gaussian pyramid in Fig. 1 is given in
Fig. 2. LoG pyramid images are filtered to remove noisy
responses as given in Eq. (2):

Lthri �x; y� �
�

0 if jLi�x; y�j ≤ τthres
Li�x; y� if jLi�x; y�j > τthres

: (2)

Here, �x; y� is the notation of element-wise operation and x and
y correspond to column and row indices, respectively. τthresh is
selected to be above the maximum noise level at the flat regions

of the image, which depends on the camera parameters and
scene brightness.

B. Weight Calculation Scheme
LoG image data can be fused by salient point selection, sum-
mation, or averaging techniques. We propose an algorithm
based on the weighted average of gradients values that are ob-
tained from the LoG image pyramid. Weighting function is
defined as the ratio of the LoG image pixel differences to
the mean value of the surrounding neighborhood region. Li
is filtered with an averaging square filter of size m∕2i to obtain
Mi , which contains local average values for LoG image layers.
The value of m is determined with respect to the size of the
input images. Then, absolute difference images (Di) are calcu-
lated by subtracting Mi from Li and taking the absolute value
of the results for each LoG image, as given in Eq. (3):

Di�x; y� � jLi�x; y� −Mi�x; y�j; i � 0;…; n − 2 : �3�
Deviation from the mean is used as a simple metric to measure
how distinguishable a pixel is from its neighboring region.

Fig. 1. Gaussian pyramid construction for n � 3.

Fig. 2. LoG pyramid for n � 3.
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Difference values calculated in this step are used to determine
the weighting coefficients for pixel-wise LoG image fusion. Let
D1

i and D2
i denote the difference values for the first and the

second source images, respectively. The desired condition
for fusion is to define a weighting factor near to one for regions
that have a high difference value ratio across the fusion bands
and, if the difference values D1

i and D2
i are similar, weighted

sum of the coefficients becomes simply the average of the
bands. Consequently, the ratio of the absolute difference values
is defined to generate weighting coefficients to combine LoG
pixel values. In the calculation scheme, a negligibly small con-
stant α term is used to prevent division by zero. The weighting
coefficients are computed for all of the pixels of each level LoG
images, as given in Eq. (4):

W i�x; y� �
D1

i �x; y�
D1

i �x; y� �D2
i �x; y� � α

; i � 0;…; n − 2: (4)

C. Contrast Direction Adaptation
As previously mentioned, to avoid suppression, direction of the
edges for LoG images are adapted before applying weighted
averaging operation. For this purpose, the sign of the values
of the LoG images are extracted which are denoted as Si
and used to create contrast conversion matrix Ci. These
operations are shown in Eq. (5):

Si�x; y� �
�
1 if Lthri �x; y� ≥ 0

−1 otherwise

Ci�x; y� � S1i �x; y� · S2i �x; y�: (5)

S1i and S2i denote the sign matrices for the ith level LoG pyra-
mid of the base and second images. When LoG images have
different signed values in a pixel index, Ci is used to convert
the gradient direction of one of the LoG pyramid images before
accumulation operation. By this way, destructive superposition
is avoided and high-frequency details extracted from both of the
images are combined into the resultant fused image as described
in detail in the next section.

D. Multiscale Reconstruction
A reconstruction process is applied after calculation of signature
conversion and weighting matrices. Because this is a multiscale
process, reconstruction is done step-by-step and at each step, a
resized low-pass image from a lower level, weighting coeffi-
cients, and signal conversion matrices are used as input. The
low-pass component of the first image is used as a base image
and signal conversion operation is applied to the second input
LoG images. After signal conversion, the weighted average of
the LoG images is computed and added to the resized base im-
age. Overall operations are shown in Eq. (6) and a single step of
a reconstruction process is displayed in Fig. 3:

Lfusedi �x; y� � W i�x; y� · L1i �x; y�
� Ci�x; y� · �1 −W i�x; y�� · L2i �x; y�

I i � Lfusedi � �2⇑��I i�1�; i � 0;…; n − 2: (6)

Here, I i denotes the ith level fused image and hence, I 0
denotes the resultant fused image. For the sake of simplicity
I 0 will be denoted as I , in the following sections.

E. Adaptive Unsharp Masking
Unsharp masking is a technique used to enhance the visibility
of edges and corners by multiplying the high-frequency
components of the images with a gain coefficient. Traditional
unsharp masking technique is applied by using a fixed gain
coefficient. However, there is a trade-off between the increased
visibility of the details and the increased artificiality due to
saturated regions. To avoid saturation at the regions near dy-
namic range limits, an adaptive unsharp masking technique is
used [24]. In this technique, direction of the edge and the dis-
tance to the corresponding saturation limit is used to calculate
pixel-wise gain coefficients.

First, a 3 × 3Gaussian filter with standard deviation equal to
one along horizontal and vertical directions is used to obtain
low-frequency components (ILP) of the fused image (I ) calcu-
lated in the previous step. High-frequency components (IHP)
are obtained by subtracting ILP from I . Directions of the edges
are assigned using IHP and the distance to the saturation point
is obtained from the ILP. Range R is calculated using these
values, as given in Eq. (7):

R�x; y� �
�

ILP�x; y�;
255 − ILP�x; y�;

IHP�x; y� ≤ 0
IHP�x; y� > 0

: (7)

By using the R matrix values, a gain matrix G is calculated,
as given in Eq. (8):

G�x; y� �

8>><
>>:

1; R�x;y�
jIHP�x;y�j×4 < 1

R�x;y�
jIHP�x;y�j×β ; 1 ≤ R�x;y�

jIHP�x;y�j×β < β

β; R�x;y�
jIHP�x;y�j×4 ≥ β

: (8)

Here, β denotes the gain coefficient of the technique.
The fused image is computed using G matrix, as given in
Eq. (9):

I result�x; y� � ILP�x; y� � G�x; y� � IHP�x; y�: (9)

A general flow of the proposed fusion technique is provided
in Fig. 4.

4. EXPERIMENTAL RESULTS

The proposed image fusion technique is applied to both multi-
spectral, and multifocus image pairs. Six example image pairs
selected from our fusion dataset are presented in Fig. 5. In
Fig. 5, all image pairs except Fig. 5(a) have 320 × 256 spatial
resolution. In the experiments, fusion results are obtained using
three levels of a Gaussian pyramid where selection of the levels
depends on the application specific constraints, such as back-
ground clutter and scene object size in pixel. Averaging square

Fig. 3. Image reconstruction step.
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filter of size 64, 32, and 16 is used for the calculation of M
matrices. The threshold value τthresh for LoG pyramid to avoid
noisy edge responses to change edge direction is selected to be 3
and the α coefficient is selected as 0.1, which is negligibly small
to avoid division by zero condition. In the adaptive unsharp
masking step, gain coefficient β is selected to be 4, which gives
satisfying edge enhancement for the test images used in this
work. Sample fusion results obtained using the proposed algo-
rithm are presented in Fig. 6.

A. Performance Measures
Performance of the proposed fusion technique is evaluated
using the objective measures including fusion metric based
on mutual information (fast-FMI) [28], edge preservation co-
efficient (QAB∕F ) [29], fusion artifacts metric (NABF) [30], and
visual information fidelity (VIFF) [31]. The fast-FMI tech-
nique calculates the regional mutual information between cor-
responding windows in fused and two source images. Higher
values of fast-FMI measure are the indicator of better image
fusion and the fast-FMI method is observed as consistent
with the subjective results [28]. The QAB∕F measure is an
objective pixel-level image fusion assessment framework based
on normalized edge preservation measure. Lower values of the
QAB∕F measure correspond to the more losses on the edge in-
formation [29]. The fusion artifacts (NABF) technique mea-
sures the level of noise or artifacts added to the fused image
due to the fusion process [30]. Lower values of the NABF
measure correspond to a better image fusion scheme. The
VIFF method tries to measure how much “effective visual in-
formation (EFI)” in the fused image is extracted from source
images, while EFI is defined as the maximum visual informa-
tion of all the source-fused image pairs. The VIFF measure uses
the visual information fidelity model to extract visual informa-
tion from source-fused image pairs and it was experimentally

Fig. 4. Complete flow chart of the proposed image fusion
technique.

Fig. 5. Six example image pairs of our fusion dataset. Image pairs
(a),(b): multispectral (MWIR-LWIR). Image pairs (c)–(f): LWIR
multifocus.

Fig. 6. Results of the proposed fusion technique for image pairs
presented in Fig. 5.
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observed that this measure is consistent with the subjective
scores [31].

Performance of the proposed algorithm is also compared
with the well-known image fusion techniques by evaluating
the performance measures given above. The comparison of
the average fusion results for the test images is provided in
Table 1. The objective tests were carried out by using the image
dataset mentioned in Section 4.B. By looking at the result pre-
sented in Table 1, one can say that the proposed technique
gives promising results for the objective fast-FMI, QAB∕F ,
and VIFF performance measures. The fast-FMI measure calcu-
lates the regional mutual information between the source and
fused images, but the method responds positively in the case of
blur type of artifact. In contrast, object/background separability
is the main essence of the total image quality term. The
proposed technique preserves and even enhances object/
background separability while still providing satisfactory perfor-
mance on the fast-FMI measure. The proposed method outper-
forms baseline methods on the QAB∕F measure because QAB∕F

is based on the preservation of edges in source images. The pro-
posed technique not only preserves but also enhances object
edges in the source images. Therefore, the proposed technique
is evaluated to be the most successful method in terms of the
QAB∕F measure. The NABF technique measures the level of
noise or artifacts in the fused image due to fusion process,
but one of the main drawbacks of the NABF measure is that
the method does not take into account the loss of information
and contrast. Therefore, the fusion techniques that introduce
enhancement on edges are evaluated as more artificial by the
NABF measure. Therefore, the NABF measure results should
be used with other performance measures instead of an indi-
vidual performance evaluation. The VIFF measure tries to ex-
tract visual information from source-fused image pairs. The
proposed technique obtains the second highest score on the
VIFF measure but the fusion technique [12] that achieves
the highest score on VIFF introduces shading type of artifacts.

The objective test showed that a general image quality term
should be defined instead of an individual performance evalu-
ation based on objective measures. Besides, the objective tests
brought forward the necessity of performing subjective tests
since objective measures fail to provide reliable results, espe-
cially the techniques introduces blurring, shading, and other
types of artifacts. Moreover, subjective evaluation is a more
accurate and reliable way to determine fusion performance
in terms of a perceived level of quality by the observers.

B. Subjective Tests
Since the statement of quality is generally considered as a sub-
jective term, the subjective evaluation is formally defined to be
the most accurate and reliable tool in the assessment of visual
quality satisfying that the number of subjects is sufficiently
large. In order to determine the performance of the image fu-
sion techniques in a subjective manner, a subjective evaluation
procedure is established. In the subjective tests, 24 people were
asked to score the fusion techniques depending on their success
on “total image quality.” Total image quality is defined as the
perception of general image quality in terms of the existence of
source image scene components in the fused image, back-
ground/foreground separability, scene object details, and arti-
ficiality. The images containing higher background/foreground
separability and object details are more likely to be scored with
higher grades by the subjects. The subjects who participated in
the tests consisted of mostly males (19 males, five females) and
nearly all of the subjects have their Bachelor of Science Degree
in engineering fields. In performance sorting, the subjects were
asked to provide scores between 1 and 7 for the total image
quality. Higher values of total image quality metric stands
for better fusion performance. In the graphical user interface
displayed in Fig. 7 designed for the subjective tests, the source
images used in the fusion and the fused images corresponding
to each fusion technique are visualized. In this manner, the sub-
ject has the opportunity to compare the results of the different
image fusion frameworks. The subjects were asked to score to-
tally 11 image pairs and the average scores of each fusion
method are provided in Table 2. The average scores of the sub-
jects corresponding to each image pair is also provided in Fig. 8.

Table 1. Performance Results Comparison of Baseline
and Proposed Image Fusion Techniques on the Objective
Tests

Fast-
FMI [28]

QAB∕F

[29]
NABF
[30]

VIFF
[31]

Zeeuw [14] 0.9453 0.8291 7.31e − 6 0.6141
Rockinger [15] 0.9343 0.7608 0.0019 0.6136
Burt [2] 0.9418 0.8661 0.0068 0.6559
Karali [24] 0.9450 0.8678 0.0135 0.6712
Mitanoudis [32] 0.9405 0.0088 0.0071 0.1718
Toet [12] 0.9405 0.8179 0.0206 0.7557
Proposed 0.9434 0.8732 0.0081 0.7180

Fig. 7. Graphical user interface developed for subjective tests.

Table 2. Performance Results Comparison of Proposed
and Baseline Image Fusion Techniques on the Subjective
Tests

Fusion Methods Subjective Scores

Zeeuw [14] 3.276
Rockinger [15] 2.602
Burt [2] 4.102
Karali [24] 5.681
Mitanoudis [32] 2.958
Toet [12] 3.515
Proposed 5.863
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By looking at the results provided in Table 2, one can say that
the proposed technique outperforms the baseline techniques in
total image quality criterion. In subjective tests, our previous
method [24] provided comparable performance with the
method proposed herein. In the tests, it is observed that the
subjects are more likely to give higher scores to the methods
that emphasize object edges without introducing undesired ar-
tifacts. The foreground/background separation based on con-
trast is another important factor in the evaluation of image
fusion performance. However, it was discovered that the pres-
ervation of contrast on the fused image was not taken into ac-
count by some of the subjects. Still, the proposed technique
outperforms the baseline techniques in subjective tests.

As an additional experiment, the images captured at four
different focus instances are fused using the proposed and base-
line fusion schemes. In this framework, the method is evaluated
subjectively to determine whether it preserves the object details

captured at different focus instances. In Fig. 9, the objects
located at different distances and captured using different focus
instances are illustrated within the multifocus fusion frame-
work. The images presented in Fig. 9 are fused by baseline
and proposed image fusion frameworks and the fusion results
are provided in Fig. 10. By looking at the results provided in
Fig. 10, one can say that the proposed scheme preserves the
object details better than the baseline fusion techniques. The
proposed technique not only preserves object details and ob-
ject/background separability but also it does not introduce un-
desired artifacts such as shading, griding, etc. The stationary
wavelet technique [15] introduces diagonal artifacts on the
fused image and it reduces the object/background separability.
Similarly, the mean wavelet fusion technique [14] reduces the
object/background separability while smoothing the objects in
the image. Fusion by selection scheme [2] preserves object

Fig. 8. Average quality scores for the test image sequences.

Fig. 9. Objects captured at different focus instances.

Fig. 10. Fusion results obtained using proposed and baseline fusion
frameworks for the images shown in Fig. 9.
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details and object/background separability but the method in-
troduces undesired artifacts (griding) to the objects in the fused
image. The Laplacian-based fusion scheme [12] loses some
object/background separation and object details (handle of
the mugs, glasses, etc.) due to smoothing and the method in-
troduces shading type of artifacts on the outer contour of the
objects. The statistical fusion method [24] enhances the edges
around objects but it introduces noisy textures and weakens
object/background separation. The principal component analy-
sis (PCA)-based scheme [32] worked quite well on image pairs
but, the method could not preserve object details [Fig. 10(e)]
in a multifocus fusion framework.

The proposed algorithm is implemented using MATLAB
on a computer with Intel i7-3770 processor with 8.0 Gb of
RAM. Average processing time of an image pair of resolution
320 × 256 is measured 59 ms, which is suitable for real-time
implementations.

5. CONCLUSIONS AND FUTURE WORK

In this paper, a multiscale contrast direction adaptive image
fusion technique that is both applicable to multispectral and
multifocus image pairs is proposed. In order to evaluate the
performance of the proposed technique, well-known image
performance measures, such as fast-FMI, QAB∕F , NABF, and
VIFF, are used and the performance measure values are listed
for the proposed and baseline fusion schemes. The proposed
fusion technique provides comparable results with other base-
line techniques in objective performance measures. In order to
obtain a more reliable performance evaluation, subjective tests
are carried out. According to the subjective tests, the proposed
fusion framework outperforms baseline techniques in total
quality measure. The proposed method and baseline techniques
were also used in the fusion scheme that contains more than
two source images and it was observed that the proposed frame-
work preserves object details and prevents undesired artifacts
better than the baseline fusion methods. The computational
complexity of the proposed fusion scheme was also evaluated
and the method is found to be suitable for the real-time
applications.

The authors would like to thank the observers for joining in the
subjective evaluations.
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