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The compressive sensing (CS) framework states that a signal that has a sparse representation in a known
basismay be reconstructed from samples obtained at a sub-Nyquist sampling rate. The Fourier domain is
widely used in CS applications due to its inherent properties. Sparse signal recovery applications using a
small number of Fourier transform coefficients have made solutions to large-scale data recovery prob-
lems, including image recovery problems, more practical. The sparse reconstruction of 2D images is per-
formed using the sampling patterns generated by taking the general frequency characteristics of the
images into account. In this work, instead of forming a general sampling pattern for infrared (IR) images,
a special sampling pattern is obtained by gathering a database to extract the frequency characteristics of
IR sea-surveillance images. Experimental results show that the proposed sampling pattern provides bet-
ter sparse recovery results compared to the widely used patterns proposed in the literature. It is also
shown that, together with a certain image dataset, the sampling pattern generated by the proposed
scheme can be generalized for various image sparse recovery applications. © 2013 Optical Society
of America
OCIS codes: (070.0070) Fourier optics and signal processing; (100.2000) Digital image processing;

(100.3190) Inverse problems; (110.1758) Computational imaging; (110.3080) Infrared imaging;
(100.3010) Image reconstruction techniques.
http://dx.doi.org/10.1364/AO.52.006858

1. Introduction

According to the Nyquist–Shannon sampling theo-
rem, signal reconstruction is possible when the sig-
nal is sampled at twice its maximum frequency.
Sampling at this rate provides a large number of
samples, which in many applications often necessi-
tates the signal to be compressed before further
processing. Increasing sampling rate is often very ex-
pensive in imaging systems, such as medical scan-
ners and radars [1]. Recently, it has been shown
through the theory of compressive sensing (CS) that
signal reconstruction can still be possible when sam-
pling below the Nyquist rate [2,3]. The CS theory
enables a sparse or compressible signal to be recon-
structed by obtaining a small number of linear

projections from that signal. Reconstruction is
achieved by carrying out an optimization procedure
to recover the original signal from the projections.
Due to these attributes, the CS framework is used
in many applications, such as imaging systems
[4–6], data compression [7,8], image fusion [9,10], re-
mote sensing [11–13], object silhouette extraction
[14], motion estimation [15], target tracking [16,17],
and automatic target recognition [18].

The CS theory is also used together with the learn-
ing concept in the treatment of determining the sens-
ing matrix and/or sparse representation matrix to
obtain higher sparse reconstruction performance
[19]. In order to obtain such a framework, an image
database is used to learn the sensingmatrix and spar-
sifying matrix simultaneously [19]. Although the
authors state that they achieve higher reconstruction
results, they also point out the computational limita-
tions of their proposed framework [19,20].
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In this work, we propose a new sampling strategy
for the sparse recovery of infrared (IR) sea-
surveillance images. Instead of sampling the Fourier
coefficients of an image using well-known frequency
characteristics, the sparse reconstruction of images
is carried out by a method that determines the sig-
nificant frequency characteristics of the image set
gathered for maritime surveillance. These frequency
characteristics enable cleverly pooling the frequency
components present in the images. Here the pro-
posed method for the IR image sparse reconstruction
is compared to baseline sampling pattern techniques
widely used in CS and experimental results are
reported. The proposed method, while shown here
for a specific surveillance problem, can also be ap-
plied without loss of generality to other image recov-
ery problems when appropriate image datasets are
available for the problem of interest.

The paper is organized as follows: Section 2 pro-
vides a brief overview of the CS theory. Section 3
surveys the sampling patterns used with the CS
framework in the literature. Section 4 presents the
details of the proposed sun-shaped pattern, and in
Section 5 the experimental methodology, recovery re-
sults, and comparative analysis are provided.

2. Compressive Sensing

The CS framework offers a method to directly sense
the data in a compressed form, rather than sam-
pling the signal at a high rate and then compressing
the sampled data. It has been shown that a finite-
dimensional signal having a sparse or compressible
representation can be recovered from a small set of
linear nonadaptive measurements [2,3]. Recently,
researchers have focused on the use of adaptive
approaches to determine the measurement matrix
[21,22]. In [21], the sparse Bayesian learning theory
is incorporated into the CS framework, but it is criti-
cized in several aspects, such as expensive sampling
process and arbitrariness in the choice of the
priors [23,24].

Let x ∈ RN be a real-valued, finite-length signal. In
the case where the signal is an image, the image may
be vectorized into a 1D vector. x can be represented in
terms of fψ igNi�1 basis vectors of dimension N × 1.
Arranging the basis vectors as columns of the basis
matrix Ψ � �ψ1jψ2j…jψN �, x may be represented as
shown in Eq. (1):

x � Ψs: (1)

The signal x is K sparse if there exist only K nonzero
values in the N × 1 vector s, as the signal x may be
represented as the linear combination of K basis
vectors.

CS systems typically acquire M < N measure-
ments from the signal x in the form of inner products
between the signal and a set of sensing vectors [1].
The measurements are equal to the inner product
of x with fϕjgMj�1 measurement vectors such
that y�j� � hx;ϕT

j i, j ∈ f1; 2;…;Mg. Arranging the

measurement vectors as rows of the matrix Φ, the
resultant measurement data y of dimension M × 1
may be expressed as in Eq. (2)

y � Φx � ΦΨs: (2)

The goal is to recover x, or alternatively the sparse
coefficients of s from y. Because M < N, recovery of
the image x from the compressed samples y is ill
posed; however, the sparsity assumption and the in-
coherence of the bases Φ and Ψ make recovery of s
possible [25]. These bases are incoherent when the
rows of the sparsity basis Φ cannot sparsely re-
present the columns of the measurement matrix
Ψ [26].

The sparse reconstruction of s is achieved by using
optimization methods to find the signal ŝ that satis-
fies the measurement data ywhile minimizing the l0
norm. However, solving for the l0 norm is generally
an n − p hard problem [8]. One of the most important
contributions made by the CS theory is that it is pos-
sible to recover the signal using l1-norm minimiza-
tion. Therefore the signal may be recovered by
solving the following optimization problem:

ŝ � arg min ∥s0∥
1

such that y � ΦΨs0: (3)

In our image recovery case, the optimization prob-
lem can be rewritten based on the sparsity of the
discrete image gradient [27]. The discrete image
gradient can be defined as in Eq. (4)

Dh�i; j� �
�
x̂�i; j� 1� − x̂�i; j� i < W

0 i � W

Dv�i; j� �
�
x̂�i� 1; j� − x̂�i; j� j < W

0 j � W

‖x̂‖TV �
XW
i�1

XW
j�1

������������������������������������������
Dh�i; j�2 �Dh�i; j�2

q
: (4)

Here, x̂ ∈ RW×W is the 2D recovery matrix, Dh�i; j�
and Dv�i; j� horizontal and vertical gradients calcu-
lated at location �i; j�, and the total-variation norm
‖x̂‖TV is the total sum of discrete image gradients
over all the pixel locations. In order to reconstruct
the 2D Fourier transform of the image [X�u; v�] from
partial Fourier samples ~X�u; v�, the optimization
problem provided in Eq. (5) needs to be solved

min ‖x̂‖TV subject to X̂�u; v� � X�u; v�: (5)

The optimization problem stated in Eq. (5) is
known as Basis Pursuit and may be solved using
linear programming techniques. There are many
solvers available for recovering the signal from the
measurement results using convex programming
[28–30]. In this work, the l1-magic package [30] is
selected because it is stated as one of the fastest
implementations of the interior-point linear
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programming technique [31], and it takes advantage
of the l1-based structure that provides efficient sol-
utions to the corresponding optimization problem.

3. Sampling Patterns in Fourier Basis

Fourier basis vectors together with a certain sam-
pling pattern are often used for the construction of
the measurement matrix Φ in sparse recovery appli-
cations [2]. The sampling pattern used in such
reconstruction schemes directly affects the perfor-
mance of the reconstruction algorithm. Candes et al.
suggest a uniform Fourier sampling pattern for CS
reconstruction [2]. The image reconstruction results
presented in [32] show that the Gaussian random
sampling strategy [Fig. 1(b)] outperforms the uni-
form random sampling technique [Fig. 1(a)] in terms
of reconstruction performance. Both sampling strat-
egies are used in three different CS optimization
frameworks in order to constitute a detailed perfor-
mance analysis.

In [2], a structured sampling pattern consisting of
22 radial lines [Fig. 1(c)] is used to demonstrate the
reconstruction performance of the CS algorithm.
This sampling pattern known as the star-shaped
sampling pattern (PStar) samples the low frequencies
more densely compared to the high frequencies. In
[33], a variable density sampling strategy is pro-
posed by exploiting the statistical distributions of
natural images in the wavelet domain as prior infor-
mation. Pseudorandom undersampling is imple-
mented in [34] by using two independent and
uniformly distributed random numbers correspond-
ing to k-space radius and azimuthal angle. Moreover,
the low frequencies, whose outermost k-space radius
is 30% of the full k-space radius, are fully sampled.
This way, the resulting sampling pattern collects
more samples at low frequencies.

In [9], two nonuniform sampling patterns, namely
the double-star-shaped pattern (PDoubleStar) and
the star-circle-shaped pattern (PStarCircle) given in
Figs. 1(d) and 1(e), respectively, are proposed. The
sparse reconstruction performances of these patterns
and the PStar are compared over several images. The
authors state that their proposed sampling patterns
provide promising results when used in the CS
framework for the image fusion problem. Because
these patterns provide promising results, they are
used as baseline sampling patterns together with
the random sampling (PRandom) and the Gaussian

random sampling (PGauss) patterns in order to make
performance comparisons with our proposed sam-
pling technique described in the next section.

4. Sun-Shaped Nonuniform Sampling Pattern

In this work, instead of using a sampling pattern de-
signed according to the general characteristics of
natural images, a specific sampling pattern has been
generated by using the frequency information ex-
tracted from an image database consisting of images
captured by an IR imaging system. The sampling
pattern generation using the image database can
be thought of as the learning phase in machine vision
theory. By introducing such a training phase, a
system-specific solution is achieved that leads to
better sparse recovery performance.

The proposed sampling pattern extraction scheme
tries to determine the important frequency compo-
nents by interpreting the frequency characteristics
of the IR images in the database. In this context,
the 2D Fourier transform of each image Xt�u; v� is
calculated as in Eq. (6) in order to obtain a general
frequency characteristic:

Xt�u; v� �
1

WH

XH−1

m�0

XW−1

n�0

xt�m;n�e−j2π�umH �vn
W�: (6)

Here, xt�m;n� �t � 1; 2;…; β� is an H ×W dimen-
sional image from the database. xt�m;n� denotes
the pixel value located at the mth row and the nth
column of the image. β stands for the number of im-
ages in the dataset.

The general frequency characteristics of the IR
images [ ~Xave�u; v�] in the database are obtained by
averaging the magnitudes of each Xt�u; v� as given
in Eq. (7):

~Xave�u; v� �
1
β

Xβ
t�1

jXt�u; v�j: (7)

~Xave�u; v� is used in an iterative framework de-
signed to generate the sampling pattern. The main
steps of this iterative technique are presented
in Fig. 2.

The iterative algorithm is based on sampling the
Fourier domain with a different rate at each itera-
tion. In the first iteration, ~Xave�u; v� is not exposed
to masking, but in further iterations ~Xave�u; v� is

Fig. 1. Uniform and nonuniform sampling patterns.
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masked with the circular mask generated in the
previous iteration. The segmentation process is per-
formed on the “Segmentation” block given in Fig. 2.
In this block, the mean (μ) and standard deviation (σ)
values of the masked ~Xave�u; v� are computed. These
values are used to calculate the threshold (τseg) used
in the segmentation:

τseg � μ� κσ: (8)

Here, μ and σ are the first- and second-order statis-
tics of ~Xave�u; v� and κ is the coefficient to adjust the
threshold to a desired level.

After the calculation of τseg, the masked ~Xave�u; v�
is segmented. The segmentation result is used to
generate a circular mask with radius R at the ith
iteration (Mi

○
) that is used to discard the insignifi-

cant frequency components. The radius R of Mi
○

is
calculated at the “CalculateRadius” block as the
length of the minor axis of the segmented blob. After
the computation ofMi

○
, the next step is to update the

Pi
Sun using the masked version of the star-shaped

pattern (Pstar). The Pstar generation is performed at
the “StarShaped(L)” block presented in Fig. 2. In this
block, the classical Pstar is formed over L radial lines.
Then, the undesired frequency components are elim-
inated by applying Mi

○
to Pstar. The masked P0

star at
each iteration is exposed to a logical OR operation
with matrix Pi−1

Sun that is used to form the PSun.
Initially, each element of the matrix Pi

Sun is set to
zero. At each iteration, Pi

Sun is updated with the
masked P0

star. After Pi
Sun is updated, the algorithm

proceeds to the next iteration by incrementing the
iteration index i and doubling the Pstar generation
rate (L). This way, the algorithm samples the lower
frequencies more densely. This is achieved with the
increase in L and the decrease in R. As an example,
the Pstar computed at each of the six iterations is
illustrated in Fig. 3.

At the end of the iterative algorithm, the PSun is ob-
tained as presented in Fig. 3(f). PSun takes more sam-
plesat lowfrequencies compared tohigher frequencies.
However, the proposed pattern selectively takes into
account the higher frequency componentswhere edges
may lie and sharp changes may occur.

For the sake of completeness of the algorithm dis-
cussion, the algorithm block for the computation of
the Psun is summarized in the algorithm block given
in Algorithm 1.

Algorithm 1 PSun generation algorithm

input: ~Xave�u; v�
output: PSun
initialization
L←4;
i←1;
R←256;
while R > 10 do
if i � 1 then
Mi

○
←Segmentation� ~Xave�u; v��;

else
Mi

○
←Segmentation�Mi−1

○
∧ ~Xave�u; v��;

end if
R←CalculateRadius�Mi

○
�;

if R > 10 then
PStar←StarShaped�L�;
P0
Star←PStar∧Mi

○
;

if i � 1 then
Pi
Sun←P0

Star;
else
Pi
Sun←P0

Star∨P
i−1
Sun;

end if
i←i� 1;
L←L × 2;

end if
end while
PSun←Pi

Sun;
return PSun;

5. Performance Comparisons

First, the image dataset used for the extraction of the
frequency characteristics is briefly mentioned. Then,

Fig. 2. Flow diagram of the sun-shaped sampling pattern gener-
ation technique.

Fig. 3. Illustration of the sun-shaped pattern at each iteration
(Pi

Sun) of the algorithm for i � 1, 2, 3, 4, 5, 6.
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the experiments carried out to compare the perfor-
mance of the proposed method with those of the base-
line techniques are explained in detail.

A. Image Database

In the experiments, the frequency characteristics of
sea-surveillance images captured in the IR band
are extracted by using the methodology explained in
Section 4. In this context, eight different sea-
surveillance scenarios consisting of 483 images of res-
olution 140 × 276 captured by a camera operating in
the 8–12 μm IR band are used. Several sample IR im-
ages present in the dataset are shown in Fig. 4. In ad-
dition to the sea-surface platforms, other objects, such
as seagulls, an electric rod, land background, and so
forth are also present in the images. These factors
cause partial occlusion in certain frames, which is a
major difficulty in determining the frequency charac-
teristics of IR sea-surface target images.

The images in the database are initially resized to
130 × 256 while preserving the aspect ratio and are
normalized to the [0–1] interval. The images are then
padded with zero blocks to make the image size
256 × 256, because the fast Fourier transform is com-
puted efficiently if the dimensions of the input image
can be expressed as a power of 2. The resizing and
zero-padding operations are performed in order to
establish a fair comparison between the proposed
method and the baseline techniques because these
previously published baseline techniques [2,9] use
256 × 256 images in the sparse reconstruction
problem.

B. Experiments

By using the algorithm presented in Section 4 and
the database detailed in Section 5.A, the PSun pattern

illustrated in Fig. 3(f) is obtained. The threshold con-
stant κ is selected as 0.103 after a large-scale cross-
validation process. In the cross-validation phase, the
sparse recovery of a group of input images is re-
peated for a large and dense set of κ values. The κ
value providing the best recovery performance is
fixed for the whole experimental studies.

As an additional constraint, the number of sam-
ples obtained by the specific choice of κ should not
exceed the number of samples present in the PStar
pattern calculated over 22 radial lines.

The “tveq_logbarrier” optimization subroutine in
the l1-magic package, enabling the barrier iterations
for equality constrained total variation minimiza-
tion, is preferred in the experiments carried out
within the scope of this work. The log-barrier
method, which follows the generic (but effective) al-
gorithm described in [35], is conceptually more
straightforward than the primal-dual method [35],
but at its core, it solves for a series of Newton steps.
The “tveq_logbarrier” subroutine requires four
parameters; namely, desired precision, iteration
growth, Newton step precision, and iteration limit.
In the experiments, these parameters are selected
as 0.1, 2, 10−8, and 600, respectively.

In the experiments, the image reconstruction per-
formance of the proposed pattern is compared with
the performances of the PRandom, PGauss, PStar calcu-
lated over 22 radial lines, PDoubleStar, and PStarCircle
sampling patterns. The number of samples present
in these sampling patterns is listed in Table 1.

In the performance comparisons, peak signal-
to-noise ratio (PSNR) is used as a performance
measure. Another performance measure used in
the experiments is the “universal image quality
index” (UIQI) [36]. This quality index, which takes
values in the �−1; 1� interval, is computed as shown
in Eq. (9):

Q �
�
σxxrecons
σxσxrecons

��
2x̄x̄recons

x̄2 � �x̄recons�2
��

2σxσxrecons
σ2x � σ2xrecons

�
: (9)

Here, σxxrecons is the cross correlation between the
original image and the recovered image, and σx
and σxrecons are the standard deviations of the original
and the recovered images, respectively. The mean
values of the original and the recovered images
are denoted by x̄ and x̄recons. The quality index mea-
sures the quality of the reconstructed image by

Table 1. Sample Sizes of Each Sampling Pattern and the Corresponding Average PSNR and UIQI Values for Experiments 1 and 2

Average PSNR (dB) UIQI

Sampling Pattern Number of Samples Exp. 1 Exp. 2 Exp. 1 Exp. 2

PRandom 2883 27.055 22.610 0.231 0.166
PStar 2740 37.578 38.117 0.588 0.678
PDoubleStar 2744 38.583 38.949 0.657 0.719
PStarCircle 2896 37.211 37.801 0.562 0.658
PGauss 2283 38.613 39.946 0.776 0.785
Proposed PSun 2226 39.512 39.948 0.829 0.840

Fig. 4. Sample IR images from the image dataset.
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evaluating the “loss of correlation,” “luminance
distortion,” and “contrast distortion” terms [36]. Sub-
sequently, these terms are multiplicatively combined
in order to achieve a quality score defined as the uni-
versal quality index. Note that the quality index be-
comes one if the input image and reconstructed
image are identical. Therefore, higher values of qual-
ity index are a simple indicator of better sparse
image recovery.

1. Experiment 1
In the first experiment, the sparse reconstruction of
82 IR sea-surveillance platform images captured us-
ing the same IR camera mentioned in Section 5.A is
performed. These images were captured within three
different sea-surface surveillance scenarios. The
sparse recovery is carried out using the proposed
sampling pattern and the baseline sampling pat-
terns. The reconstruction performances of the pro-
posed and baseline sampling patterns are
evaluated by computing the PSNR and the UIQI of
each reconstructed image.

The PSNRs of the images constructed using differ-
ent sampling patterns are shown in Fig. 5. The aver-
age PSNRs and average UIQI values corresponding
to each sampling pattern are provided in Table 1, and
examples of reconstruction results for each sampling
pattern are visualized in Fig. 6. Moreover, the
zoomed reconstruction results of a test image are
also shown in Fig. 7 in order to observe how the struc-
tural details within the image are preserved.

By looking at the reconstruction results presented
in Figs. 5 and 7, and Table 1, one can say that the
proposed sampling scheme outperforms the baseline
sampling strategies. Furthermore, the proposed Psun

includes fewer samples than the baseline sampling
methods. From Fig. 6, it can be observed that the re-
constructed images formed by using the proposed
sampling strategy preserve the detailed texture in-
formation that lies in the high frequencies of the
original image. The image details are preserved by
combining the high-frequency coefficients with the
low-frequency terms in an efficient manner. There-
fore, the technique proposed herein enables better
sparse recovery performance with fewer samples
compared to the baseline methods.

In order to investigate and visualize the frequency
domain coverage of the sampling patterns further, an
error image jFFTfx − xreconsgj is provided in Fig. 8 for
each radial sampling regime.

By looking at the error images presented in Fig. 8,
one can say that the error values for PSun are mainly
zero, especially at low frequencies, because PSun cov-
ers more low-frequency components than other sam-
pling regimes. The PSun sampling framework also
collects samples at high frequencies in a clever man-
ner. This way, the edges and structural information
are better preserved, which leads to higher recovery
performance. Also note that the error image com-
puted for the random sampling strategy is not visual-
ized in Fig. 8 because the random sampling technique
does not provide comparable reconstruction perfor-
mance with the radial sampling schemes.

2. Experiment 2
In the second experiment, 120 images of resolution
244 × 324 captured with a camera working in the
8–12 μm IR band are used. Note that the camera
and the surveillance scenarios are considerably
different from the ones used in the first experiment.

Fig. 5. PSNR ratios of the reconstructed images using different sampling patterns for experiment 1.
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In addition, the sea-surface platforms are located at
various ranges. The images in this dataset are ex-
posed to the same preprocessing phase performed
in the first experiment before being used in the
sparse reconstruction problem. As a result, the im-
ages obtained are of size 256 × 256. After preprocess-
ing, the test images are reconstructed using the
proposed sampling strategy and baseline sampling
methods. The reconstructed images formed using dif-
ferent sampling patterns are illustrated in Fig. 9.
The corresponding PSNRs and average PSNR values
are provided in Fig. 10 and Table 1, respectively.
Average UIQI values are also given in Table 1.

By looking at these results one can conclude
that the proposed sampling pattern represents
the general characteristics of sea-surface targets
captured in the 8–12 μm IR band better than the
baseline sampling schemes. The proposed pattern
not only provides higher reconstruction performance
but also reduces the number of samples. Because the
proposed Psun pattern collects the high-frequency

components in a clever manner, the sharp edges
and important texture details still exist in the recon-
structed images. Therefore, the distant platforms
appearing on/near the horizon are still visible in
the images reconstructed using the PSun pattern,
whereas most of the signature coming from the
distant platforms decays in the images constructed
using the baseline sampling patterns.

In experiments 1 and 2, for the random sampling
pattern, the PSNR values of each reconstructed
image frame, reconstruction results, and the error
analysis image are not provided because the results
of the random sampling strategy are significantly
worse than those obtained with the other sampling
patterns considered in this paper. This is also the
case when the autocorrelations of the sampling pat-
terns are analyzed. Because the autocorrelation of
the random sampling pattern consists of a single
peak centered at the DC location, it can be thought
that the reconstruction may suffer from lack of
representative frequency components. However, the

Fig. 6. Examples of reconstructed images using different sampling patterns for experiment 1.

Fig. 7. Examples of zoomed reconstruction results obtained using different sampling patterns for experiment 1.

Fig. 8. Error images calculated for radial sampling patterns.
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autocorrelations of the radial patterns preserve their
radial manner and they are concentrated at the low
frequencies that contain most of the energy.

In both of the experiments, the proposed Psun pat-
tern has fewer samples than the baseline sampling
patterns. As an additional experiment, using the

Fig. 9. Examples of reconstructed images using different sampling patterns for experiment 2.

Fig. 10. PSNR ratios of the reconstructed images using different sampling patterns for experiment 2.
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image dataset constructed for the second experi-
ment, the effects of the sample size on the
reconstruction performance are observed by using
different sample-sized sun-shaped patterns in the
reconstruction. The relation between the average
PSNR value and sample size is visualized in Fig. 11.
From the results presented in this figure, the upward
trend in the reconstruction performance can be ob-
served with the increasing number of samples.
Because the CS measurement process is progressive,
it is quite natural to observe that the reconstruction
quality increases with the growing number of sam-
ples. However, the CS theory mainly focuses on
achieving a better reconstruction performance with
a limited number of samples. Therefore, the proposed
sampling pattern is suggested to be used rather than
the classical sampling methods for better recon-
struction performance under the limit of available
computational power.

6. Conclusion

In this paper, a novel sampling pattern extraction
scheme based on the Fourier characteristics of im-
ages collected for sea-surveillance purposes in the
IR band is proposed. The proposed sampling pattern
is used together with the CS framework for the
sparse image recovery problem. Experimental re-
sults indicate that the proposed sampling scheme
outperforms the baseline sampling methods in the
image sparse reconstruction problem. Another ad-
vantage of the proposed technique is its efficiency,
as it provides higher recovery performance while
using fewer samples than classical sampling tech-
niques. The experimental studies also show the
generalization capability of the proposed sampling

pattern construction technique. By using the statis-
tics of the frequency characteristics of the image da-
tabase collected for a specific problem, the proposed
pattern collecting the important low- and high-
frequency components in a clever manner enables
higher image reconstruction performance. Therefore,
the proposed technique can be used for any sparse
image reconstruction problem.

As a future work, we will investigate the applica-
tion of the proposed sampling technique to old-
generation scanning-based pseudoimaging systems
in order to convert them into imaging systems by uti-
lizing the scanning pattern in the CS framework.
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