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Sea-surface targets are automatically detected and tracked using the bag-of-features (BOF) technique
with the scale-invariant feature transform (SIFT) in infrared (IR) and visual (VIS) band videos. Features
corresponding to the sea-surface targets and background are first clustered using a training set offline,
and these features are then used for online target detection using the BOF technique. The features cor-
responding to the targets are matched to those in the subsequent frame for target tracking purposes with
a set of heuristic rules. Tracking performance is compared with an optical-flow-based method with re-
spect to the ground truth target positions for different real IR and VIS band videos and synthetic IR
videos. Scenarios are composed of videos recorded/generated at different times of day, containing single
and multiple targets located at different ranges and orientations. The experimental results show that
sea-surface targets can be detected and tracked with plausible accuracies by using the BOF technique
with the SIFT in both IR and VIS band videos. © 2011 Optical Society of America
OCIS codes: 100.2000, 100.4999, 100.5010, 110.3080, 330.1880, 070.5010.

1. Introduction

Surveillance of the sea surface using infrared (IR)
and visual (VIS) band cameras mounted on land or
sea platforms to detect, track, and classify symmetric
and asymmetric targets gains importance in military
and security applications [1–4]. Processing of sea en-
vironments in the IR band is an especially challen-
ging research task because sea radiance depends
on sky reflections, sun glints, blackbody emissions
from wave facets, and atmosphere [5]. Apart from
the background clutter, low signal-to-noise ratio,
low contrast, sensor noises, and the thermodynamic
state of the targets also affect the detection and
tracking of the targets in the sea background or at
the horizon. Therefore, it is difficult to extract robust

features in the IR band. In addition, features may
change significantly in the subsequent frames due
to illumination changes and target or platformmove-
ment, which makes target detection and tracking in
the IR band a challenging research subject. Different
methods have been proposed for tracking purposes in
IR band videos [6–12].

Features obtained using the scale-invariant fea-
ture transform (SIFT) [13] are used in target track-
ing because they have a high differentiation property
and are invariant to scale and rotation, robust to
noise, and partially invariant to affine transforma-
tion and intensity changes. When compared to other
interest point detectors, such as those of Moravec
[14] and Harris and Stephens [15], SIFT features
are more robust to background clutter, noise, and oc-
clusion. Harris corner detection is not invariant to
scale, which is important in a sea-surveillance sys-
tem, where the target may change its orientation
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rapidly or the camera angle changes in the subse-
quent frames.

In this work, we propose the use of SIFT features
together with the bag-of-features (BOF) technique
for detection and tracking of sea-surface targets in
IR and VIS band videos. Extensive scenario-based
comparisons using real IR and VIS band videos
and IR synthetic videos are performed, and the per-
formance of the proposed method is compared with a
well-known optic flow method, the Kanade–Lucas–
Tomasi (KLT) feature tracker [16], using different
performance metrics. The scenarios include far
located, occluded, and maneuvering targets at differ-
ent times of day. To the best of our knowledge, no at-
tempt has been made previously to detect and track
these types of targets using SIFT features. The major
contribution in this work is the investigation of the
effects of the SIFT parameters on feature extraction
and the usage of these features together with the
BOF technique for target detection and tracking.

The paper is organized as follows: in Section 2, a
brief review is provided about the SIFT technique
and its parameters. In Section 3, the BOF technique
is explained. The proposed detection and tracking
scheme together with the offline feature selection
are explained in detail in Section 4. Experimental re-
sults with a comparison using ground truth data
with different metrics are provided in Section 5. Con-
cluding remarks are made and directions for future
research are provided in Section 6.

2. Scale-Invariant Feature Transform

SIFT features are widely used in applications for
target detection [17], tracking [18], classification
[19], image matching [20], and constructing mosaic
images [21]. The performance of target detection
and tracking can be improved by optimizing the SIFT
parameters for specific scenarios. For this purpose,
over a dataset including sea-surface targets, SIFT
parameters, described in the following subsections,
are optimized.

A. Contrast Threshold Value

The difference of the Gaussian space is computed to
obtain SIFT key points as below [13]:

DGðx; y; σÞ ¼ ½Gðx; y;nσÞ −Gðx; y; σÞ� � Iðx; yÞ: ð1Þ

Here, x and y are the pixel coordinates of the pro-
cessed image Iðx; yÞ, Gðx; y; σÞ is the Gauss filter hav-
ing variable scale, n is the scale multiplication
coefficient, andDGðx; y; σÞ is the Gauss difference im-
age. In this space, scale-space extremas are detected
within the neighborhood of each point in the previous
and next scale-space image. In [13], it is stated that
the contrast threshold value should be above 0.03 for
images having intensity values between 0 and 1.
Depending on the value of this threshold, the number
of keypoints can be reduced. In our case, we deter-
mine this value such that the feature descriptors
are representative and the number of features is

less for the low computational complexity for sea-
surveillance systems.

B. Maximum Harris Corner Coefficient

Keypoints go through a further elimination process
by using a cornerness measure. For this purpose,
Hessian matrix is computed for each keypoint as

H ¼ Ixx Ixy
Ixy Iyy

� �
: ð2Þ

Here, Ixx, Ixy, and Iyy are the directional derivatives
computed in the horizontal, diagonal, and vertical
directions, respectively. For the keypoints located
on a corner, both eigenvalues of the corresponding
Hessian matrix are distinct and take high values.
Equation (3) meets these constraints and is used
to decide whether a keypoint is located on a corner
or not:

ðαþ βÞ2
αβ ≤

ðrþ 1Þ2
r

: ð3Þ

In the equation, α and β are the eigenvalues of the
Hessian matrix. The corner coefficient r is a param-
eter to be considered in feature extraction.

C. Orientation Assignment and Descriptor Definition

An orientation is computed and assigned for each
keypoint to achieve rotation invariance. A gradient
histogram is constructed, and the local peak within
the 80% of the highest peak is assigned as the orien-
tation of the keypoint. If more than one local peaks
exist, then a keypoint is defined for each orientation.

A SIFT descriptor is constructed using the gradi-
ent magnitudes and orientations around the key-
point detected before. The scale of the keypoint is
used to create a Gaussian window and to weight the
gradient magnitudes around the keypoint with this
window. Gradient orientations are rotated according
to the predefined keypoint orientation. Finally, gra-
dient histograms are constructed for the four by four
regions around the keypoint and each histogram is
inserted into a row vector in order to construct the
SIFT descriptors.

D. Feature Matching

SIFT descriptors are highly distinctive, and the
Euclidian distance measure is used to match these
descriptors. First, the distances between all descrip-
tors are found. Then, for each descriptor d, first the
two closest descriptors, c1 and c2, are selected. If the
ratio of the distance between d and c1 to the distance
between d and c2 is greater than a predefined thresh-
old, descriptors d and c1 are considered as a match.
After describing the parameters for the SIFT feature
extraction, we provide the BOF technique, used for
target detection, in the next section.
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3. Bag-of-Features Technique

In order to retrieve related documents based on
query words, documents should be indexed by using
representative words (keywords). In addition, docu-
ments should be classified according to those key-
words to reduce the search time. In the case of a
text search, document classification or indexing is
much more easy compared to a visual search. For ex-
ample, we have two documents as follows:

• D1 ¼ fBOF is used in computer visiong
• D2 ¼ fWe have used SIFT featuresg:

In these two documents, there are 10 distinct
words as {BOF, is, used, in, computer, vision, we,
have, SIFT, features}. Documents can be represented
by using the number of occurrences of words as:

• D1 ¼ f1; 1; 1; 1; 1; 1; 0; 0; 0; 0g
• D2 ¼ f0; 0; 1; 0; 0; 0; 1; 1; 1; 1g:

However, in the case of an image search, there are
no words for indexing images. The BOF technique is
used to identify images as a combination of represen-
tative words as it is in the text search. It is an adap-
tation of the “term frequency inverse document
frequency” method from information retrieval to
computer vision and is widely used for visual object/
image categorization and retrieval applications
[22–24]. The main motivation of using BOF features
lies in its intra- and interclass discrimination power.

Each image is considered as a combination of vi-
sual terms (visterm) obtained by clustering features
extracted from the training set. The flow diagram of
the BOF is given in Fig. 1. Identification of visterms

and representing each image by visterms are consid-
ered as offline learning steps. In the classification
phase, features extracted from the test frame are
used to create a visterm histogram. This histogram
is compared with that obtained from the training
dataset to find the actual category of the test frame,
as seen in the last step in Fig. 1.

Any type of feature can be included to the BOF
technique because it is independent of feature defini-
tion. However, the features that could tolerate
changes in rotation, illumination, and scale should
be used for successful target detection. Therefore,
the SIFT features that satisfy the needs of robust
tracking scenarios are used in this work.

Because our study is focused on sea surveillance,
i.e., images containing almost always sea-surface,
sky, and target, categorizing frames is not meaning-
ful. However, subimages or features extracted from
the images can be classified. In this work, the BOF
technique is modified to classify SIFT descriptors as
SIFT descriptors corresponding to the target or back-
ground instead of classifying images. As a result
of classification, regions containing target SIFT de-
scriptors are considered as the target region.

4. Target Detection and Tracking with SIFT Features

The proposed target detection and tracking method
is composed of training and test phases. In the train-
ing phase, SIFT descriptor characteristics (visterms)
corresponding to the target and background are de-
termined by clustering SIFT features extracted from
the training set. Based on the SIFT descriptor char-
acteristics learned on the training phase, targets are
detected and tracked using SIFT descriptors on the
test phase. In the following sections, we will describe
the training and test phases in detail.

A. Training Phase: Classifying SIFT Features

The training phase is the learning phase of the BOF
technique. This phase can be summarized as the
clustering of SIFT descriptors extracted from the tar-
get and background regions. The steps, which are
horizon detection, target/background determination,
and visterm generation, are explained in the follow-
ing sections.

1. Horizon Detection

The intensity difference between the sea and sky in
the IR images can be easily seen in Fig. 2. Intensity
values at the sky are almost always greater than

Fig. 1. (Color online) Flow diagram of the BOF procedure. Fig. 2. Detected horizon is marked with a solid white line.
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those in the sea. The horizon detection used in this
work depends on this fact. With the detection of the
horizon, the sky background is discarded and the sea
background is taken into account. For the VIS band
case, there is no need to detect the horizon because
no SIFT features are extracted above the horizon by
properly adjusting the SIFT parameters.

The horizon is detected by computing the intensity
difference between the consecutive rows for each
pixel as given in Eq. (4):

DxðyÞ ¼ Iðx; yÞ − Iðxþ 1; yÞ; ð4Þ
where DxðyÞ is the intensity difference vector be-
tween rows x and xþ 1 (assuming top row of the
frame is the first row). The number of the positive
differences is checked for each row (Dx). If at any
row the number of positive differences is equal or
greater than 80% of the width of the frame and this
value is the global maximum, this row is defined as a
horizon. An example of the detected sky line is given
in Fig. 2. This method may fail in the case when the
camera rotates or there exists a target longer than
20% of the sky line length on the sky line. In our case,
it is assumed that the camera does not rotate and
only moves in the azimuth and elevation angles.
As this process is only used in the training phase,
it has no effect on the performance of target detection
and tracking.

2. Target/Background Determination

In the target/background determination, a semiauto-
mated approach is adopted, where the operator first
specifies the target location by drawing a rectangle
around the target. Then, the SIFT descriptors
located in this rectangle are assumed as SIFT de-
scriptors corresponding to the target and the rest
as background SIFT descriptors. The effects of the
SIFT descriptors extracted from the sea regions in
the selected target region can be omitted because
the dominant part of the SIFT descriptors are due
to the target.

3. Visterm Generation

Target and background SIFT descriptors have differ-
ent characteristics because they have different gradi-
ent histograms. The BOF technique makes use of
clustering methods to discriminate the characteris-
tics of background and target descriptors. We used
the k-means algorithm [25–28] to cluster the target
and background SIFT descriptors by using different
k values for target and background. Resulting cluster
centroids are considered as visterms, which are the
characteristics of the SIFT descriptors for target
and background regions.

B. Test Phase: Target Detection and Tracking

We use the fact that there cannot be significant
changes in the target direction at the consecutive
frames in sea-surveillance videos because the speed

of the above-sea platforms is limited when compared
to other platforms. Therefore, the SIFT descriptors
extracted from two consecutive frames should be
similar both on and around the target locations.
The main steps of the detection and tracking, which
are descriptor classification, descriptor matching,
and region-of-interest (ROI) selection, are described
in detail in the following sections.

1. Descriptor Classification

SIFT descriptors should be classified as target or
background descriptors in order to match the target
descriptors in the consecutive frames. Descriptor
classification is performed by using the cluster
centroids obtained in the training phase. First, SIFT
descriptors are extracted from the current frame. For
each descriptor (descj), the Euclidean distances to
each target centroid (centtk) and background centroid
(centbk) are calculated by using Eq. (5):

distt;bjk ¼
Xp
n¼1

½descjðnÞ − centt;bk ðnÞ�2; ð5Þ

where disttjk (distbjk) is the distance between the jth
descriptor and the kth target (background) cluster
centroid, descjðnÞ is the nth element of the jth de-
scriptor, centkðnÞ is the nth element of the kth cluster
centroid, and p is the size of the SIFT descriptor vec-
tor (128 in our case).

The distance between the SIFT descriptors and the
cluster centroids is normalized as

distt;bjknorm ¼ distt;bjk
max½distt;bjk �

; ð6Þ

where disttjknorm (distbjknorm) is the normalized distance
value between the SIFT descriptor j and the target
(background) centroid k and max½disttjk�
(max½distbjk�) is the maximum distance value between
the SIFT descriptor and the target (background) cen-
troids. The minimum normalized distance is calcu-
lated for both target and background centroids.
Then, the SIFT descriptor is classified as

decision

¼
�
target; min½disttjknorm � ≤ min½distbjknorm �;
background; otherwise:

where min½disttjknorm � (min½distbjknorm �) is the smallest
normalized distance value between the SIFT descrip-
tor and the target (background) centroids. A sample
classification result of the SIFT descriptors is given
in Fig. 3, in which circles indicate the SIFT descrip-
tors classified as the target, and plus signs indicate
the SIFT descriptors classified as the background.

Until a target region is detected, all target SIFT
descriptors extracted from the previous frame are
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used to match with the target SIFT descriptors in the
current frame. However, after detecting a target re-
gion, only the target descriptors located in this target
region are used for descriptor matching. This proce-
dure reduces the running time of the algorithm and
provides more accurate results.

2. Descriptor Matching

In this work, the method proposed by Lowe [13] is
used to match the SIFT descriptors in the consecu-
tive frames. However, this matching procedure
may give false matches, as seen in Fig. 4. Addition-
ally, the classification of the SIFT descriptors as tar-
get or background may result in false alarms, as seen
in Fig. 3. The main cause of those false alarms is that
neither classification nor matching steps make use of
the important information about SIFT descriptors,
i.e., their locations. The position information can
be used to eliminate false alarms resulting from
the classification or the matching steps. In this step,
descriptor matches corresponding to the targets are
pruned by appropriate rules.

Pruning of matched features: Information be-
tween two consecutive frames can be used to prune
false matches. While pruning the matched SIFT de-
scriptors in the consecutive frames, we use the fact

that the descriptors should match in a consistent
way such that the descriptors extracted from the
front part of the target in the ith frame should match
with those extracted from the front part of the target
in the (iþ 1)th frame. This consistency can be
checked by the tangent slope and the length con-
straints to prune false positive matches in the conse-
cutive frames.

When two matched points in the consecutive
frames are connected by a line, the slope of the line
can be easily calculated. The slopes calculated from
thematched descriptors should be almost equal in all
matched pairs. In this work, the slope is considered
as the difference between the y coordinates of the
matched points, as can be seen in Eq. (7):

ΔðmÞ ¼ mi
y −miþ1

y ; ð7Þ

where mi
y and miþ1

y are the y coordinates of the
matched SIFT pointm in the ith and (iþ 1)th frames,
respectively.

In order to detect false matched SIFT descriptors,
the mean and standard deviation of the slopes are
calculated among the matched descriptors in the con-
secutive frames, and then the matched SIFT descrip-
tors are eliminated according to their slopes using
the relation below:

decisionðmÞ
�
true; μs − σs < ΔðmÞ < μs þ σs
false; otherwise

:

Here, m is the matched SIFT descriptor pair in the
consecutive frames and μs and σs are the mean and
the standard deviation of all slopes.

In this paper, our aim is to match the SIFT descrip-
tors coming from the same parts of the target in the
consecutive frames. For example, SIFT descriptors
extracted from the front part of the target at frame
i should match with those of the target at frame iþ 1.
In order to achieve this, a line is obtained by connect-
ing two matched points in the consecutive frames
and the length of this line is calculated. The length
of the matched descriptors should be almost equal in
all matched pairs. The length is calculated by using
Eq. (8):

LðmÞ ¼ mi
x −miþ1

x þw: ð8Þ

Here, mi
x (miþ1

x ) is the x coordinate of the matched
SIFT point m in ith [(iþ 1)th] frame and w is the
width of the frame. The width w is a fixed value
for each frame sequence, so this parameter can be
omitted in the calculations for the sake of simplicity.

Matches in the consecutive frames should have si-
milar lengths because they are expected to match
SIFT descriptors extracted from the same parts of
the targets. The matched points are eliminated
based on their lengths:

Fig. 3. (Color online) Classification results: circles and plus signs
indicate the target and background SIFT descriptor locations,
respectively.

Fig. 4. SIFT match sample between two consecutive frames.
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decisionðmÞ
�
true; μl − σl < LðmÞ < μl þ σl
false; otherwise ;

where LðmÞ is the length of the matched SIFT de-
scriptors in the consecutive frames and μl and σl
are themean and standard deviation of length values
of all matched points, respectively.

3. Region-of-Interest Selection

After matching the SIFT descriptors in the consecu-
tive frames and pruning the false matches, the ROI
including the target region needed to be determined.
The ROI is considered as the minimum rectangle
that encloses all matched SIFT descriptors.

A separate ROI is calculated for each frame. How-
ever, this ROI is verified and updated if needed by
using the ROI of the previous frame. Verification
of the new ROI is performed based on Eq. (9):

ROI_Validity

¼
�
invalid wdiff=wmax > T or hdiff=hmax > T
valid otherwise ;

ð9Þ
where wdiff (hdiff ) is the absolute difference between
the width (height) of the ROIs of the consecutive
frames and wmax (hmax) is the maximum of widths
(heights) of the ROIs for consecutive frames. The
threshold T is taken as 0.20 in our trials.

If Eq. (9) gives invalid result for the ROI of the
current frame, then the ROI is updated by using
Eq. (10):

ROI ¼ ROIprev þ ROIcur
2

; ð10Þ

where ROIprev is the ROI calculated for the previous
frame and ROIcur is the ROI that is marked as inva-
lid from Eq. (9). These verification and update meth-
ods help the proposedmethod to control the growth of
the ROI in a reasonable manner by eliminating the
false ROI detection results.

In the detection step, ROI is calculated by finding
the largest candidate region after performing a dila-
tion operation. However, the ROI is calculated based
on all matched SIFT descriptors in the tracking
steps.

5. Experimental Studies

In the implementation of the proposed approach,
SIFT features are extracted with the algorithm de-
scribed in [29]. Four scale levels are created for each
octave of the Gaussian scale-space to extract SIFT
features from both IR and VIS band videos. Contrast
threshold values are set to 0.005 and 0.01 for the IR
and VIS band videos, respectively. The corner thresh-
old r is set to 15 and 10 for the IR and VIS band
videos, respectively. The KLT feature tracker is used
to compare the performance of the proposed method.

In the literature, the method is used to extract inter-
est points and to match them in the subsequent
frames [16,30,31]. The KLT feature tracker is a
sparse optical flow method based on three assump-
tions: constant brightness, small movements in time,
and coherent motion at neighboring elements. A
sparse iterative version of the KLT feature tracker
in pyramids, described in [32], is implemented in this
study. Initial target detection is done manually. A 10
by 10 search window and five-level pyramid is used
for tracking purposes. In the following sections, we
will describe the performance metrics and the data-
set used for performance comparisons.

A. Evaluation Criteria

We evaluate the proposed approach on several videos
by using four metrics based on different morphologi-
cal similarity. These four performance metrics can be
defined as follows:

• Metric 1 (M1): M1 is the Euclidean distance
between the center of the ground truth of the target
region and the center of the detected target region
(jJK j in Fig. 5).

• Metric 2 (M2):M2 is the city block distance be-
tween the center of the ground truth data and the
center of the detected target area. This metric
can be visualized in Fig. 5 by the summation of jOJj
and jOK j.

• Metric 3 (M3): The ratio between the unde-
tected target area and the total target area (false
negative rate) is used as a third metric. This metric
gives what percentage of the target is missed. The
area enclosed by ABMHLD divided by the area
enclosed by ABCD provides an illustration of this
metric in Fig. 5.

• Metric 4 (M4): This metric gives the true posi-
tive rate, which is calculated as the ratio between the
correctly detected target area and the whole detected
target area. In Fig. 5, this metric is illustrated as the
ratio between the area enclosed by HMLC divided by
the area enclosed by HGFE.

For each video, the four metrics are calculated by
averaging each metric along the frame sequences.

Fig. 5. The rectangle represented by ABCD is the target area,
and EFGH is the detected area. J represents the center of the
ABCD rectangle, and K represents the center of the EFGH rectan-
gle. O corresponds to the origin of the coordinate system.
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We expect low values for the first three metrics (M1,
M2, and M3) and high values (closer to 1.0) for the
last metric (M4). The main motivation to use differ-
ent metrics is to evaluate the proposed method from
different aspects to obtain robust results. The me-
trics defined above are complementary of each other.
For example, if onlyM3 orM4 is used, then whenever
the ROI is miscalculated and the whole image is se-
lected as the ROI, M4 will favor a false detection. On
the other hand, if only some part of the target is se-
lected as the ROI, then M3 will favor a false detec-
tion. Whenever the ROI is found to be the same as
the ground truth data, M3 will be zero and M4 will
be one, which indicates a perfect detection. Boundary
values for M3 and M4 are defined for the decision of
the true target detection. Hence, the number of true
and false detections can be obtained and used to de-
termine the overall detection performance of the
method. The maximum value that M3 can take is se-
lected as 0.5 in this work, and values obtained below
this threshold are assumed to indicate true target de-
tection. Similarly, the minimum value that M3 can
take is also selected as 0.5, which indicates that
the target should cover at least 50% of the detected
target region. True target detection is assumed if
both of these constraints are satisfied.

B. Datasets

Mainly, we have three types of datasets: real and syn-
thetic IR videos and VIS band videos. The frames of
each video are labeled to identify by using a rectangle
target region. One sample ground truth frame can be
seen in Fig. 6. In the same figure, the detected ROI is
also illustrated. The experimental results for each
dataset are given in the following subsections. For
each dataset, different videos are selected for train-
ing and testing sets.

1. Results for Real IR Band Videos

In this dataset, the proposed technique is trained
and tested on different sea-surveillance videos.
Three videos are used for training and eight videos
are used for testing. The sample videos examined
in this work are obtained at field trials using a
long-wave IR camera working in 8 − 12 μm range.
The captured image has dimensions of [136,272]
and is located on the ground to observe the scene. Dif-
ferent scenarios include images containing single
and multiple targets and targets located at different

ranges and orientations, and recorded at different
times of day.

The content of the training videos can be summar-
ized as follows:

• Real_Video_Train_1: A target is moving
in the scene, and after some time, two targets are
appearing in the scene.

• Real_Video_Train_2: A target is approaching
from a different distance and orientation to the
camera.

• Real_Video_Train_3: A target is coming too
close to the camera while moving in the scene.

The content of test videos can be summarized as
follows:

• Real_Video_Test_1: A target is coming to-
ward the camera with an angle of approximately 45°.

• Real_Video_Test_2: A target is moving in a
circular route.

• Real_Video_Test_3: A target is moving at
almost the same distance to the camera position.

• Real_Video_Test_4: A target is moving at
almost the same distances according to the camera
position.

• Real_Video_Test_5: A target is moving at
almost the same distance to the camera position.

• Real_Video_Test_6: A target is moving to-
ward the camera, and then it changes its direction
and moves away from the camera.

• Real_Video_Test_7: A target is moving away
from the camera by changing its direction.

• Real_Video_Test_8: A target is moving at
almost the same distance to the camera position.

In the training phase, more than 7000 and 16,000
SIFT descriptors are extracted from real IR videos
for the target and background regions, respectively.
Best performance is achieved by using 100 clusters
for target descriptors and 300 clusters for back-
ground descriptors.

Results for real IR videos by using visterms ob-
tained from real IR videos are given in Table 1. In
the ground truth data, the targets are specified by
a rectangle including the mast of the sea-surface tar-
get. However, masts are not so much visible in IR
videos because of their sizes compared to the target.
Because the masts are not detectable by our ap-
proach (no interest points can be detected on or
around masts), the detected target area does not
always contain masts. Therefore, an increase is ob-
served in our false-negative rate (M3). The algorithm
is tested on several real IR videos, and the average
performance achieved forM4 is 79.62%. As defined in
the previous section, target detection rates are found
using the thresholds defined forM3 andM4. An aver-
age detection rate of 75% for the proposed technique
over each video of the real IR video dataset is
achieved.

Fig. 6. Ground truth and the detected target areas for a sample
frame. The ground truth is marked with the solid rectangle. The
detected region is marked with the dashed lines.
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Sample tracking results are given in Fig. 7. In this
figure, the ground truth region is specified by solid
lines, and the detected region is specified by the
dashed lines. As shown, although the size of target
changes in time because of the target motion, the tar-
get can be detected correctly.

The performance of the proposed technique is com-
pared with that of KLT feature tracker. Tracking re-
sults for real IR videos are given in the bottom rows
of Table 1. The proposed method provides better
tracking performance, and the ROI detected by the
proposed technique is more similar to ground truth

data compared to that obtained using the KLT
feature tracker. Also, the KLT tracker is not robust
to illumination changes. Detection performance of
the KLT tracker over the same dataset is 55% worse
than that achieved by the proposed method (75%).
For a sample real IR video sequence, we provide
M3, M4, and the detection performances in Fig. 8.

The tracking results for training and testing sets
by using visterms obtained from IR synthetic videos
are presented in Table 2. As expected, in some videos,
synthetic visterms perform worse compared to
visterms obtained from real videos (Real_Video_
Train_2). In fact, this result is expected to occur be-
cause the synthetic and real IR videos have different
histograms.

2. Results for Synthetic IR Band Videos

The method proposed is also tested using synthetic
IR videos. The IR scene is generated by texture map-
ping for sea and sky backgrounds. Sea and sky back-
grounds are validated via histogram comparisons
with real IR data [33]. Then a 3D noise component,

Table 1. Real IR Video Results by Using Centroids Extracted from
the Real Videosa

Video Reference M1 M2 M3 M4

Real_Video_Train_1 6.37 7.85 0.32 0.80
85.12 105.90 1.00 0.00

Real_Video_Train_2 13.92 17.11 0.35 0.72
20.02 24.15 0.37 0.54

Real_Video_Test_3 14.80 18.37 0.45 0.78
20.95 25.80 0.41 0.61

Real_Video_Test_1 12.41 14.36 0.29 0.87
19.07 21.63 0.29 0.77

Real_Video_Test_2 14.41 17.14 0.53 0.81
24.62 30.06 0.46 0.62

Real_Video_Test_3 18.69 20.67 0.38 0.77
34.07 38.07 0.67 0.62

Real_Video_Test_4 15.25 17.73 0.36 0.79
14.65 15.87 0.47 0.91

Real_Video_Test_5 18.63 23.08 0.46 0.73
22.79 28.26 0.45 0.49

Real_Video_Test_6 15.48 17.71 0.47 0.75
23.45 24.87 0.46 0.60

Real_Video_Test_7 18.44 22.65 0.70 0.88
20.71 24.74 0.45 0.76

Real_Video_Test_8 25.53 28.97 0.33 0.77
28.61 33.69 0.36 0.52

aThe top rows represent the proposed method results, and the
bottom rows represent the KLT results.

Fig. 8. M3, M4, and detection results for a sample real IR video
sequence.

Table 2. Real IR Video Results by Using Centroids Extracted from
the Synthetic IR Videos

Video Reference M1 M2 M3 M4

Real_Video_Train_1 7.78 9.42 0.23 0.67
Real_Video_Train_2 56.00 68.80 0.78 0.25
Real_Video_Test_3 17.16 21.32 0.43 0.72
Real_Video_Test_1 14.76 17.14 0.35 0.87
Real_Video_Test_2 16.22 18.90 0.53 0.84
Real_Video_Test_3 16.52 18.39 0.41 0.84
Real_Video_Test_4 14.15 17.50 0.42 0.82
Real_Video_Test_5 18.64 23.44 0.48 0.74
Real_Video_Test_6 14.90 17.83 0.51 0.78
Real_Video_Test_7 23.19 27.27 0.65 0.82
Real_Video_Test_8 23.78 28.84 0.58 0.77

Fig. 7. Tracking results from a real IR video.
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which is independent in spatial and temporal space,
is added to simulate sensor effects [34]. The standard
deviation of the noise components is selected to be 7
for the 8 bit dynamic range IR images. The field of
view of the imaging system is selected to be 6°,
and the distance to the target platform varies be-
tween 2500 to 5000m. The testing and training
videos are created by using different camera posi-
tions and target orientations. In the experiments,
three videos are used for training and three videos
for testing. Synthetic IR video frames have a resolu-
tion of 256 × 256.

More than 26,000 background SIFT descriptors
andmore than 10,000 target SIFT descriptors are ex-
tracted from the synthetic training videos. The best
performance is achieved by using 200 clusters for
target descriptors and 500 clusters for background
descriptors.

The tracking results for both training and testing
are given in Table 3 by using the centroids obtained
from the synthetic IR videos. The average perfor-
mance achieved for M4 is 89.33%. The KLT feature

tracker performs worse on IR synthetic videos com-
pared to real IR videos and the proposedmethod. The
KLT feature tracker cannot locate consistent points
as does the SIFT. An average detection rate of 55%
for the proposed technique over each video of the syn-
thetic IR video dataset is achieved. Performance of
the KLT tracker over the same dataset is obtained
to be 51%. Sample tracking result obtained using
visterms extracted from the synthetic training set
is given in Fig. 9.

The tracking results for synthetic training and
testing videos are given in Table 4 for visterms ex-
tracted from the real IR videos, respectively.

3. Results for VIS Band Videos

The proposed technique is tested on three different
VIS band videos. The frame size for this dataset is
640 × 480. Because SIFT descriptors are extracted
from the gray-scale images, a process is performed
on red-green-blue to gray-scale conversion. Then,
20,000 SIFT descriptors from target regions and
160,000 SIFT descriptors from background regions
are extracted. Training samples are collected from
different sea-surface targets in different sea-surface
scenarios. In order to observe the effect of the num-
ber of clusters in the clustering target and back-
ground SIFT descriptors, the algorithm is run
several times using a different number of clusters.

The best results are obtained by using 500 cen-
troids for target SIFT descriptors and 5000 centroids
for background SIFT descriptors. The centroids ob-
tained from the synthetic and real IR videos are also
used in the experiments. But targets cannot be de-
tected in VIS band tests by using these centroids,
as expected. The results for VIS band videos are gi-
ven in Table 5. The proposed method is tested on sev-
eral VIS band videos, and the average performance
achieved for M4 is 94.66%. Because the KLT feature

Table 3. Synthetic IR Video Results by Using Centroid Extracted
from the Synthetic Videosa

Video Reference M1 M2 M3 M4

Syn_Video_Train_2 5.26 6.68 0.33 0.94
17.53 19.70 0.22 0.54

Syn_Video_Train_3 4.81 6.07 0.28 0.91
8.13 10.17 0.06 0.48

Syn_Video_Test_1 4.68 5.48 0.47 0.85
10.75 12.07 0.18 0.66

Syn_Video_Test_2 5.80 7.52 0.46 0.91
13.55 16.48 0.21 0.46

Syn_Video_Test_3 5.60 7.22 0.45 0.92
12.96 15.81 0.32 0.45

aThe top rows represent the proposed method results, and the
bottom rows represent the KLT results.

Table 4. Synthetic IR Video Results by Using Centroids Extracted
from Real Videos

Video Reference M1 M2 M3 M4

Syn_Video_Train_2 5.37 6.67 0.42 0.95
Syn_Video_Train_3 8.38 10.17 0.51 0.92
Syn_Video_Test_1 10.03 12.55 0.72 0.90
Syn_Video_Test_2 6.32 8.05 0.52 0.93
Syn_Video_Test_3 6.09 7.88 0.51 0.92

Table 5. Visual Band Video Resultsa

Video Reference M1 M2 M3 M4

Visual_Band_Video_1 10.19 13.00 0.59 0.97
7.24 8.96 0.07 0.80

Visual_Band_Video_2 2.09 2.62 0.22 0.96
2.20 2.69 0.00 0.74

Visual_Band_Video_3 13.49 17.00 0.18 0.91
101.17 132.10 0.54 0.30

aThe top rows represent the proposed method results, while the
bottom rows represent the KLT results.Fig. 9. Tracking results from synthetic IR video.
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tracker is very sensitive to illumination changes,
satisfactory results could not be obtained for Visual_
Band_Video_3. The visualization of sample tracking
is given in Fig. 10.

6. Discussion and Conclusion

We propose a method to automatically detect and
track sea-surface targets on IR and VIS band videos
based on the BOF technique with SIFT features. Our
method has mainly two phases: training and testing.
In the training phase, the BOF technique is used to
identify the characteristics of SIFT descriptors ex-
tracted from the target and background. Then, target
detection and tracking is performed in the test phase
by using the learned model of the SIFT descriptors
and an extended matching scheme. In the method,
the BOF technique and SIFT descriptors are used to-
gether for robust target detection and tracking
against illumination, scale, and rotational changes.
By the use of heuristic rules such as tangent slope
and the length, false alarms are eliminated in the
matching of the target features in the subsequent
frames.

As a future study, the proposed method will be ex-
tended to track multiple targets. Motion estimation
techniques such as Kalman filtering will be planned
to assist the proposed heuristic rules for target
gate determination. The fusion of SIFT features ex-
tracted in IR and VIS band images may improve both
detection and tracking accuracy, which is a another
possible extension of this study.

The authors would like to thank Dr. S. Gökhun
Tanyer, Dr. Cemil B. Erol, and Dr. Alper Yıldırım
for their support in this study; Serdar Çakır for help-
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