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Abstract

CrossMark

An accurate and computationally simple phase shifting interferometry (PSI) method is
developed to reconstruct phase maps without a priori knowledge of the phase shift. Previous
methods developed for random PSI either do not address general sources of error or require
complex iterative processes and increased computational time. Here we demonstrate a novel
method that is able to extract the phase using only Fourier transform (FT). With spatial FT
analysis, randomly phase-shifted data is reordered to allow performing temporal FT on the
intensity, which is a function of the phase shift. Since the entire process, including order
analysis and phase calculation, is based only on Fourier analysis, it is rapid, easy to implement,
and addresses general sources of error. The method exhibits high performance in experiments
containing random phase shifts. Moreover, simulations incorporating common experimental
error sources such as random intensity noise, intensity harmonics, and phase shift errors
demonstrate that the proposed method performs as good as or better than the state-of-the-art

phase reconstruction techniques in terms of accuracy and time.

Supplementary material for this article is available online
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1. Introduction

Phase-shifting interferometry (PSI) is a powerful tool for
nondestructive characterization of samples with low absorp-
tion characteristics [1]. In the most general case, PSI requires
multiple phase-shifted images, since both amplitude and phase
information needs to be decoupled from the intensity images.
Conventional analytical solutions for PSI require constant
phase shift increments between three or more interferograms
[2-4]. However, in practice, a variety of factors come into
play, including phase-shift errors, nonuniform phase-shift dis-
tribution, intensity harmonics due to detector nonlinearities,
and random intensity noise [5, 6]. Thus, the necessity for pre-
cise, constant, and known phase shifts limits the application
of conventional methods [7]. Although a family of intensity

* Author to whom any correspondence should be addressed.

averaging algorithms have been proposed to reduce phase
shifting errors [5, 8], these algorithms require the phase shifts
to be equal. For nonequal phase shifts, methods based on least-
square (L-S) fitting have been proposed [9], but they also suffer
from intensity harmonics [10].

A number of algorithms have been proposed to address
arbitrary and unknown phase shifting, including advanced iter-
ative algorithm (AIA), the algorithm based on principle com-
ponent analysis (PCA), the algorithm for self-calibrating gen-
eralized PSI and the algorithm based on VU factorization [11-
14]. However, these algorithms do not consider nonuniform
phase shifts, where the phase shift has spatial dependency, or
intensity harmonics. Thus a method that works with general
sources of error is required. Recently, such a method based
on general iterative algorithm (GIA) has been proposed [15].
However, it is also based on computationally complex iterative
processes, and requires long computational time. Contrarily,
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Fourier analysis is a widely-known, general, and rapid tool
for the analysis of harmonic patterns incorporating noise.
Yet, the previously introduced Fourier-transform (FT) based
techniques require evenly-spaced phase shifting [16, 17]. In
this work, we propose a novel algorithm that is based only
on Fourier-transform and is able to extract the phase from
unknown, randomly phase-shifted fringe patterns, accounting
for the most general sources of error.

Constant phase shifts between interferograms generate a
periodic intensity waveform for a given pixel [7]. However,
phase shift errors result in deviations from an ideal sinusoidal
waveform. Therefore, approaches to extract the phase from
nonsinusoidal intensity waveforms are needed. The present
work reports a novel method that generates a sinusoidal intens-
ity waveform from randomly phase-shifted interferograms by
utilizing a spatial FT approach. This further allows obtaining
the unknown phase via temporal FT, which is otherwise not
possible for randomly phase-shifted patterns. This may also
represent an important solution for other optical metrology
applications that utilize Fourier analysis. Phase retrieval is
the centerpiece of numerous measurement techniques, includ-
ing noninvasive measurements of refractive index, and sub-
sequent determinations of temperature and density, as well as
deformation and displacement measurements. Further, applic-
ations such as digital holography, interference microscopy,
speckle interferometry, optical coherence tomography, and FT
spectroscopy all underscore the method’s potential breadth of
impact [18-22].

The proposed algorithm relaxes the restrictions imposed on
the phase steps between the interferograms and corrects for
well-known phase imaging errors including random intens-
ity noise, intensity harmonics, and phase shift errors. As veri-
fied by simulations and experiments, it demonstrates robust-
ness to these error sources and produces accurate results with
both low- and high-resolution mechanical stepping equipment.
Another major advantage of the proposed approach is that it
purely relies on the well-known Fourier theory. Further, the
intensity is not analyzed pixel by pixel, which renders our
method computationally cost-effective compared to methods
that use intensity minimum-maximum comparison [23].

2. Methodology

The setup used in our experiments for phase imaging is shown
in figure 1. Phase shifts are achieved by translating a mirror
in the sample arm with a piezoelectric stage (NF15AP25/M,
Thorlabs, theoretical resolution of ~ 0.76 nm), which is con-
trolled by a piezo controller (Thorlabs KPZ101) in the open-
loop mode. Light source is a continuous-wave laser (A = 1058
nm).

The intensity for the two beams interfering in PSI is
given as [7]:

L, (x,y) = A(x,y) + B(x,y) cos (¢(x,y) + 6,), (1)

where I, (x,y) is the intensity at the image pixel (x,y), A(x,y)
is the background intensity, B(x,y) is the fringe or intensity
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Figure 1. Phase microscopy setup. BS: Beam splitter. PBS:
Polarized BS. NDF: Neutral density filter. QWP: Quarter waveplate.
TL: Tube lens. M: Mirror. PZS, PZC: Piezo stage and controller. L1,
L2: Lenses for enlarging reference beam. Objective: Thorlabs
LMH-20X-532. Laser: continuous-wave, A = 1.058 pm.

modulation, and ¢(x,y) and 6, are the wavefront phase and
a given phase shift, respectively. The subscript # denotes the
interferogram frame index. For linear phase shifts, i.e. 8, =
nAd, it is clear from equation (1) that, intensity at each pixel
varies sinusoidally as a function of the introduced phase shift:

In(x,y) = A(x,y) + B(x,y) cos (d(x,y) +nA0).  (2)

The nonshifted phase of this function corresponds to the wave-
front phase ¢(x,y) and it can be retrieved using temporal
Fourier analysis with respect to the shifted phase. FT of the
intensity with respect to the n (temporal) dimension can be
expressed in terms of the frequency of the phase-shifting (w)
as:

1,(x,y) = FT,[I,(x,y)]. 3

Subscript n indicates that Fourier transform is in the frame
index dimension. For frequency wp,x corresponding to the
most dominant component in the Fourier spectrum, the com-
plex amplitude can be written as:

N

Z"-’mzu( (x’ y) = Z In ('x? y)efinwmux ’ (4)

n=1

where N is the total number of interferograms. The phase of
the interferogram ¢(x,y) is stored in the Fourier domain as:

Lgp (%,9) = Loy, (x,3)] €. (5)

The wavefront phase then can be easily determined by:

o (x,y) = arg L. (x,)] . (©6)

Correct determination of wp,yx, as well as recording the data
in multiples of the period is required for accurate phase extrac-
tion. This in turn requires precise control on 6,.. Equation (1)
may deviate from a sinusoidal waveform as a result of
phase shift errors (or intended random phase-shifting), back-
reflections, nonlinearities in detectors, all presenting chal-
lenges in retrieving the wavefront phase. Wavefront recon-
struction from nonsinusoidal and even nonperiodic intensity
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Figure 2. The methodology is explained through a series of steps. Recorded interferograms are shown in (a), with borders colored
according to the interferogram order (first image shown with red). The optional sectioning procedure is shown in (b). The spatial FT of each
interferogram is shown in (c). Position and amplitude filtering on the Fourier spectra is given in (d), with a representative case illustrated in
the red-framed image. The complex maps in (c) and (d) are color-coded where hue is associated with the phase, and brightness is associated
with the amplitude. The color map is shown at the right side of the figure. Calculated r,, are shown in (e), reordered r, are shown in (f),
reordered interferograms are shown in (g) and finally, the phase map calculated with FT in n dimension is shown in (h). If the image is
divided into sections as demonstrated in (b), the steps from (c) to (h) are implemented for each section. Then, phase maps from the
individual sections are stitched together to form the complete phase map.

waveforms stands at the forefront of this work. We present a
spatial FT-based method that, to the best of our knowledge,
for the first time allows one to reorganize arbitrary and ran-
domly phase-shifted interferograms in the order of increasing
phase shift (figure 2), so that the intensity at each pixel varies
as a sinusoidal function of the phase shift. Interference pattern
with random phase shifts (8,) can be described with Euler’s
identity as:

In(_x7y) :A(_x7y) + - (;’y) eld)(x,y)ele,, + (;’y) e—"b(%)’)e—lan.

@)
We evaluate the two-dimensional spatial FT of the intensity:
U, (vy,vy) =FTy [ (x,¥)], 8)

where vy, v, are the spatial frequencies in x and y directions,
respectively. Then combining equations (7) and (8) yields:

B . .
U, (vy,vy) =FT, ,[A(x,y)] + FT,, {(Xz’y)euﬁ(x,y)} o0
B . .
+FT,, [();’y)e—wﬁ(w)} e, ©)

The three terms can be written compactly as:

U,(ve,vy) = A+ BT e 4 B¢ 100, (10)

U, (vx,vy) is obtained from 7, (x,y), therefore, it identifies the
nth interferogram. A, BT, and B~ are complex quantities and A
does not depend on 6,,. For increasing 6,,, Bt e’ and B~ e~
are phasors with increasing and decreasing phase, respect-
ively. Due to these two components, U,(vx,1y) generates an
ellipse in the complex domain. If we consider a single inter-
ferogram in this set (denoted as m), selected among the set of
interferograms (denoted as n), the mth element of the ellipse
refers to the mth interferogram and the position on the ellipse
is determined by 6,,. Thus, even in the case that 6,, is random,
the order of 6, relative to other indices can be inferred by the
relative position of U,,(vy,vy) on the ellipse. So, the frames
can be reordered such that 6, is monotonically increasing. We
exploit this approach of reordering to remove the randomness
in the phase shifts.

U, (vx,vy) is an array of spatial frequencies, where each
coordinate (vy,1y) generates an ellipse. To identify each inter-
ferogram with a single quantity, instead of an array, a selec-
tion and summation procedure is performed. We start by
selecting spatial frequencies with comparatively high val-
ues of > |U,(vy,1y)|. The pixel with indices (vy,1y) is
selected if:

N

N
> " |Un(vs,13)| > Percentile (Z |U,,(I/X,Vy)|,p> .

n=1 n=1
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Here, the function Percentile(S,p) returns the value corres-
ponding to the highest pth percentile in the set S. We determ-
ined in our experiments and simulations that p = 2 yields con-
sistent and accurate results. The choice of p is amenable to
further optimization.

Then, the ellipse generated by U, (vy, vy) oscillates either in
the order of increasing or decreasing 6,, depending on which
of the phasor magnitudes (|[B™ | or |B™|) is larger. The summa-
tion of ellipses with opposing oscillation directions intensifies
the ellipse’s flattening, thereby hindering the order evaluation.
The oscillation directions of U, (vy,vy) and U,(—vy, —1y) are
inherently opposite. It is imperative to select one side of the
spectrum to ensure coherent ellipse oscillation, filtering out
the opposing side. We achieved this through filtering in the
Fourier domain, as implemented in our approach:

Upn(vx,vy >0)=0. (12)
Since interferograms are real-valued maps, filtering out half
of the spectrum results in no information loss. The amplitude-
and position-based filtering is illustrated in figure 2(d). After
the selection of the spatial frequencies (v, vy), U, (v, 1y) are
summed to arrive at the operational parameter r;,:

n = ZZUﬂ(VmI/},) = a_f_ﬁ"rei@,, +ﬁ_ei9" :

Vy

13)

where a, 31, and 8~ are complex quantities corresponding

to:
« :ZZFTx,y[A(xvy)]v

|2

B .
B-i- :ZUZFTX,)’ [ (;?y) ez¢(x,y):| 7

Vx

o, [He) ]

Vx

(14)

3. Experimental results

In what follows, we detail the application of the method to
a set of randomly phase-shifted interferograms obtained in
a phase microscopy setup (figure 1). The real versus ima-
ginary part of r, for the as-recorded sequence is plotted in
figure 3(a). Then, by considering the argument of r, the data is
reordered, and plotted in figure 3(b). The corresponding plots
of intensity versus frame index n are shown for as-recorded
and reordered sequences in figures 3(c) and (d), respectively.
The red cross and cyan square data points show the first two
interferograms in the sequences. While the intensity of the as-
recorded data is not a periodic function (figure 3(c)), the sinus-
oidal pattern of the intensity is recovered once the interfero-
grams are ordered (figure 3(d)). Next, the FT of the intensity
presented in figure 3(d) is evaluated to retrieve the object phase
(¢(x,y)) by using equations (4)—(6), while this is not possible
for the as-recorded data presented in figure 3(c). This ability

(a) As-recorded rn (b) Reordered rn
o 8. % o %o -
008¢ x 008° x
° ©10.05 o °
| [
=l e o{ o $ P
E
8 ° loost8 of
o0 o %0 o
© o ¢ ® o 0O
1 0.5 0 0.5 1 -1 0.5 0 05 1
Re(rm) Re(rn)
(C) As-recorded Intensity (d) Reordered Intensity
1
0.8
= 0.6
(2]
c
2
£ 0.4
N 0.2
0
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Figure 3. Implementation of the method to 32 randomly
phase-shifted interferograms. The real vs. imaginary parts of r, are
plotted for the (a) as-recorded and (b) reordered data. r, is translated
to the origin by subtracting the mean. In (b), the data are plotted in
the order of increasing arg(r,). The red cross and cyan square data
points represent the 1st and 2nd interferograms, respectively. Frame
index vs. intensity is plotted for a single pixel for (c) as-recorded
and (d) reordered data. The sinusoidal form of the intensity has been
recovered in (d), when the ordered frame indices obtained in (b) are
used for plotting.

to recover the order from randomly phase-shifted frames may
have significance in a wide range of phase retrieval applica-
tions.

For performance evaluation, we present an error ana-
lysis. We first extract the phase map of a bare silicon wafer
(ref(x,y)) using the proposed method with a high number of
interferograms (128 frames) with constant phase steps (6, =
nA®). Employing such a large number of frames with constant
phase steps minimizes experimental errors including phase
shift inaccuracy and nonuniform phase shifting due to the aver-
aging effect [5, 23]. The resulting phase map is used as the
reference for further error quantification, which is a typical
approach followed for obtaining a reference phase map [15].

We then recorded randomly phase-shifted data with 32
frames (figure 4(a)) to extract the phase map (Prana(x,y))
as shown in figure 4(b). The phase error is calculated as
0(x,¥) = brana(x,¥) — Prer(x,y), given in figure 4(c). For
both Prana(x,y) and ¢rer(x,y), first the interferograms are
sorted, then the phase is acquired with temporal FT using
equations (4)—(6). High frequency components that lie bey-
ond the resolution limit of the microscope (\/(2NA)~1.3 ym)
are low-pass filtered. This analysis has been repeated for 10
different randomly phase-shifted data sets. The results reveal
that, on average, the method can retrieve the phase map
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Figure 4. Phase imaging of a bare silicon wafer. (a) One of the 32
randomly phase-shifted interferograms. (b) Phase map extracted
using the method. (c) Calculated phase error. (d) Histogram of
d¢(x,y), resulting in 0.060 rad RMS error.

with a standard deviation (RMS error) of o (d¢(x,y)) = 0.060
rad, as seen in the histogram in figure 4(d). Considering the
wavelength, this corresponds to a resolution of around 10 nm.
It is evident from these findings that the proposed method
enables accurate PSI measurements using randomly phase-
shifted interferograms. Consequently, it eliminates the need
for high-accuracy and expensive phase-shifting equipment.
The results also demonstrates a direct indication of robustness
of the method to parasitic phase shifts due to environmental
instability.

Another aim of the method is to improve the phase extrac-
tion from uniformly phase-shifted data. This is evaluated by
extracting the phase from 28 uniformly phase-shifted inter-
ferograms in two different ways. In the first case, temporal FT
was directly applied for calculating the phase, without reorder-
ing the data. In the second case, the data was first reordered
and then the temporal FT was applied to extract the phase.
In both cases, phase is acquired with FT using equations (4)—
(6). For the second case, the r, value for the as-recorded and
reordered data can be seen in figures 5(a) and (b), respectively,
along with corresponding intensity plots for a pixel shown in
figures 5(c) and (d). Phase maps extracted with and without
reordering were compared with the reference phase map to
compute the error, as described earlier. Both analyses were
repeated for 10 different data sets. Results show that the RMS
error is reduced from 0.032 rad to 0.027 rad by reordering the
data, yielding ~17% improvement. This is because when the
data is not reordered, phase shift between the interferograms
is not evaluated and positions of the frames are accepted as
they are. However, when the data is reordered, the phase shift

(a) As-recorded rn (b) Reordered rn
oo o 0.05 oo o
o 9 o
> L] & o
o x o
% ° )
=le ¢
£ &1 © &
e °
° P4 o '
° °
° °
] o
0000 ° -0.05 00—00—°
-1 0.5 0 0.5 1 -1 0.5 0 0.5 1
Re(rm) Re(rn)
(C) As-recorded Intensity (d) Reordered Intensity
1
0.8
= 0.6
(%]
c
o
< 0.4
0.2
0
0 5 10 15 20 25 0 5 10 15 20 25
Frame Index Frame Index

Figure 5. Implementation of the method with 28 uniformly
phase-shifted interferograms. (a) The real vs. imaginary parts of r,
are plotted for the (a) as-recorded and (b) reordered data. In (b), the
data are reordered based on arg(r,). The red cross and cyan square
data points represent the 1st and 2nd interferograms, respectively.
The frame number vs. intensity for a single pixel is plotted using the
(c) as-recorded and (d) reordered data.

of each interferogram is evaluated with respect to the other
frames and thus the phase shift errors can be reduced. As a
result, the method is shown to be advantageous even in the
case of a high-accuracy piezoelectric stage, corroborating its
power as a fast, accurate, and easy measurement approach. As
expected, uniformly phase-shifted interferograms result in less
error than randomly phase-shifted interferograms (0.027 rad
vs. 0.060 rad). A comparison of figures 3(d) and 5(d) shows
that the sinusoidal obtained from uniform phase shifting is
more uniform, thus the phase can be extracted more accurately
with temporal FT.

4. Simulation methodology

Finally, we evaluate the robustness of our method to com-
monly investigated error sources, including random intensity
noise, intensity harmonics, nonlinear phase shifts, and com-
pare our results with those of a recent work based on GIA [15].
In [15], GIA was compared with five other work and shown to
achieve the best result in terms of error. So we have imple-
mented the simulation scheme adapted in [15] to incorporate
the same type and magnitude of errors, and used our method
to extract the phase. The procedure for interferogram creation
as detailed in [15] is concisely recapitulated below. The model
for the interferogram, specific to Simulation Set X as presen-
ted in [15], is described as follows:
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I, (X7Y) = A(x,y) +AGWN,, (%)’) a) Interferogram
P
+ 3 Bi(x,y)cos (k(x,y) + kby(x,y)).  (15)
k=1
The function AGWN,(x,y) denotes the additive Gaussian
white noise, with standard deviation 0.4, mean 0O, and is
randomly generated for each frame. Simulation set incor-
porates intensity harmonics, represented with the summation
(Zle()) term, which is calculated based on the ‘gamm.a (©) Error Total Time
model’ [24], with = 1.5. Background intensity (A(x,y)) is o ¥ . — N
modeled as: g —©—Sectioned léediqned,toltal
) ( / ) E o2l A95 M Experimental
I 1[(x—N/2)"+(y—N,/2 5
Alx,y)=5—— ( o/ )2 = ) ) (16)  £415 2"
2 4 (Nx/z) + (Ny/z) (LIIJ) =55
= o1
where N, = N, = 1024, denoting the pixel number inx andy & =
0.05t

axes. The ground truth phase map (¢(x,y)) is modeled as:

1
¢(x,y) = 10 x peaks (x,y) + rRebs 17)

where peaks,() is the ‘peaks’ function of MATLAB, scaled
in the range [0,27]. Then, spatially nonuniform phase shifts
(0,(x,y)) are formulated in terms of Maclaurin polynomials
as:

-V

l)u—v’

auv nx y (18)

ZZ

uOvO

where «, , are coefficients of the Maclaurin polynomials,
chosen randomly with mean O and standard deviation 0.5,
except for ag,,, which is taken as: «gg , = n /4.

One of the simulated interferogram frames along with the
phase map extracted by our method are shown in figures 6(a)
and (b), respectively. Figure 6(c) shows the error calculated as
a function of the number of frames N used for extracting the
phase. The figure plots the error for two different cases with
and without sectioning, which is explained below.

The robustness of the method to nonuniform phase-
shift distribution (6,(x,y)) can be further improved by a
minor modification to the method, which we call sectioning
(figure 2(b)). Sectioning reduces the error substantially for
each N, as shown in figure 6(c). With this approach, instead
of operating the algorithm on the entire frame at once, the
algorithm is applied to smaller subsections of the frames so
that 6, (x,y) = constant. The complete phase map is obtained
by stitching of phase maps of the subsections. For r, to cre-
ate accurate ellipses, each subsection should enclose a full
fringe, so the number of subsections is determined by the max-
imum fringe size. 24 x 24 subsections have been used in the
simulations.

5. Simulation results

Simulated patterns are processed with our method to extract
the phase maps, and then the error is calculated by evalu-
ating the difference between these phase maps and the true

5 |
8 16 24 32 40 48 56 64
Number of Frames, N

8 16 24 32 40 48 56 64
Number of Frames, N

Figure 6. (a) An example interferogram generated for the
simulations. (b) Phase map extracted using the method. (c) Phase
error computed as a function of frame number with and without
sectioning. Each data point corresponds to an average of 100
simulation sets. (d) Data acquisition time (black bars); combined
computational and data acquisition time with sectioning (orange
bars) and without sectioning (yellow bars).

phase map. Our results compared to those of other six meth-
ods reported in the literature are shown in table 1. Our method
(FT-only) results in less error (0.066 vs. 0.068—0.184) than
the other methods with N =48 interferograms. Although the
other methods use N =8 interferograms, the increased num-
ber of frames in our case does not produce a disadvantage
since the entire phase extraction procedure, including the data
acquisition of N =48 interferograms, takes only ~93 s with
our method. The GIA algorithm [15] produces the closest error
to ours, but it requires a larger computational time (~559 s).
Considering that it would take 14.93 s to acquire 8 frames
with our setup, their total phase extraction time is estimated as
573.74 s. These results demonstrate that our method is 6 times
faster (574 s / 93 s) for a similar level of error (0.066 rad vs.
0.068 rad). Notably, we can further reduce the error to 0.058
rad by increasing N to 64, with a total phase extraction time of
only 125 s. The data acquisition times plotted in figure 6(d) are
recorded by automatizing the stage and the camera. A stand-
ard office computer is used for the computations (CPU: 11th
Gen. Intel i5-11 500 @ 2.70 GHz, 12 cores, RAM: 32 GB).

6. Discussion

The findings presented in this report constitute a Fourier-
transform-only approach for interferometry. The developed
method accurately extracts phase information from randomly
phase-shifted interferograms, with a notably low experimental
error of 0.060 radians. Moreover, the accuracy in scenarios
involving high-precision stages is further increased by 17%
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Table 1. Performance comparison for simulation with six other methods in the literature. Our method is labeled as FT-only, where results
for N = 8, 48, 64 are shown, for other methods N = 8. Our method is the fastest, and has the least error for N > 48. Higher number of
frames in our method is justified with lower total time compared to other low error methods tabulated (GIA, MPSI, PTI). Our experimental
time is reported to indicate typical experimental times. [Reprinted] with permission from [15] © The Optical Society.

Method FT-only GIA [15] MPSI[25] PTI[26] Xu’s[27] AIA[11] Hoang’s[28]
Error (Rad) 0.179  0.066 0.058 0.068 0.094 0.095 0.173 0.183 0.184

N (Frame Number) 8 48 64 8 8 8 8 8 8
Experimental Time (s) 1493  89.59 119.56 - - - - - -
Computational Time (s)  1.33 3.84 5.24 558.84 186.69 882.67 59.33 7.73 145024.84

(0.032 rad to 0.027 rad), which highlights its suitability for
high-end applications.

One of the salient features of the method is its superior
performance in the presence of various error sources, such
as higher harmonics, intensity noise, and nonuniform phase
shifting, both in terms of error reduction and computational
efficiency. In the Supplementary Material, we provide fur-
ther evidence of our method’s robustness through simulations
involving a speckle noise model detailed in [29] and random
fringe patterns. These simulations confirm that our approach
performs well in the presence of speckle noise and effect-
ively navigates the complexities of intricate fringe patterns.
An essential advantage of this approach lies in its simplicity,
leveraging the well-established Fourier theory, which is not
only computationally efficient but also highly accessible to
researchers, without the need for expensive equipment and
complex algorithms.

In parallel, some of the limitations of the approach arise
from reliance on this mathematical tool. First, since the con-
struction of accurate ellipses is contingent upon spatial Fourier
transforms, it is necessary for each frame to include at least
a single fringe. However, this is consistent with numerous
optical and signal processing systems, ensuring adequate data
sampling. Further, the reliance on FT in the n dimension
implies that despite its capacity to accommodate random
phase shifts, it exhibits optimal performance with regular
phase shifting. Finally, achieving high-precision phase maps
may demand a relatively larger number of frames. However,
this seemingly increased data acquisition requirement is out-
weighed by the significant reduction in overall phase extrac-
tion time compared to alternative methods, as evidenced in
section 5.

7. Conclusion

In this work, we demonstrate a Fourier-transform-based phase
imaging method that can extract the phase from unknown
randomly phase-shifted interferograms with high precision
(experimentally with an error of 0.060 rad). Further, the
method is shown to improve the phase error by 17% even in the
case of a high-accuracy piezoelectric stage. As demonstrated
through simulations including higher harmonics, intensity
noise, and nonlinear phase shifting; the method extracts the
phase with lower error, in less time (combined experimental
and computational time) with reduced complexity compared

to the state-of-the-art. Thus, the method is capable of combin-
ing high measurement precision with high speed, noise resili-
ence, simplicity, and reduced computational effort character-
istics of the well-established Fourier theory. This advance ful-
fills the need for precise phase extraction under general error
sources, including environmental errors such as vibrations, air
flow or temperature fluctuations, and removes restrictions on
expensive equipment or advanced algorithms.
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