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Laser writing enables optical functionality by altering the
optical properties of materials. To achieve this goal, efforts
generally focus on laser-written regions. It has also been
shown that birefringence surrounding the modified regions
can be exploited for achieving functionality. The effect has
been used to fabricate wave plates in glass, with significant
potential for other materials. Here, we establish analogous
stress control and birefringence engineering inside silicon.
We first develop a robust analytical model enabling the pre-
diction of birefringence maps from arbitrary laser-written
patterns. Then, we tailor three-dimensional laser lithog-
raphy to create the first, to the best of our knowledge,
polarization-control optics inside silicon. © 2023 Optica Pub-
lishing Group

https://doi.org/10.1364/OL.504600

Polarization degree-of-freedom plays a critical role in numerous
areas of science and technology [1]. Thus, there is signifi-
cant interest towards on-demand polarization control for diverse
design considerations [2]. In particular, plug-and-play free-
space polarization optics, which could be rapidly fabricated and
deployed, is strongly desired [3]. Direct laser writing is emerging
as a rapid and inexpensive paradigm for fabricating state-of-
the-art optical devices [4,5]. In these techniques, the laser is
focused in a transparent material, inducing nonlinear processes
to create controlled modifications, leading to three-dimensional
(3D) modulation of optical properties [6]. The precise control
in 3D enables significant advances in the fabrication of opti-
cal elements, e.g., with ultrafast-laser-structuring inside glasses
[7–11]. Through modulating optical properties on or around
laser-written areas, polarization control and wave plate creation
are achieved for the visible regime [9–11]. Fabricating such wave
plates in the infrared is also possible, however challenging [9],
due to potential transmission losses.

Here, we consider silicon (Si), due to its high infrared trans-
parency, as well as its significant integration potential as the
backbone of electronics, electro-optics, photovoltaics, and Si-
photonics industries. The 3D nonlinear laser lithography of Si is
emerging as a powerful paradigm to exert optical control deep
inside the wafer, without altering the wafer surface [4]. The sub-
surface lithography efforts in Si are already enabling various
amplitude- and phase-control optics, including waveguides and

holograms [4,12–15]. In contrast, polarization control inside Si
is lacking. Motivated by the preceding considerations, we aim
to develop a general framework for stress-induced birefringence
control in Si. We first observe that the stress surrounding the
laser-written structures in Si can create birefringence due to
stress-optical effects, analogous to glass [16–18]. By analyzing
experimental retardance from basic structures, we develop an
analytical model that directly connects laser-written patterns to
retardance maps. The model provides insight into birefringence
of diverse laser-written patterns. Then, guided by this model, we
tailored the laser lithography parameters and the 3D architec-
ture in order to create quarter-wave plates (QWPs) and half-wave
plates (HWPs) inside Si.

Our model is based on cylindrical structures forming the
basic building units. In the selected laser lithography regime
for this Letter, the laser irradiation creates cylindrical structures
of the radius ∼ 3 µm over a plane formed by the x and y coor-
dinates, with an elongation of ∼ 100 µm along the z coordinate
(Fig. 1). Thus, we consider a two-dimensional (2D) model with
plane-strain conditions, i.e., no z dependency. We consider the
laser-written structure as a “pressurized hole” (PH) and use the
associated stress tensor of the PH model [19]. The compressive
stress exerted by such a structure is illustrated in Fig. 1(a).

The Cauchy stress tensor for the associated PH model in polar
coordinates is given as (see Supplement 1, section 1) [19]:

σr,θ =

⎡⎢⎢⎢⎢⎣
σr =

α

r2 σrθ = 0

σθr = 0 σθ = −
α

r2

⎤⎥⎥⎥⎥⎦ . (1)

Here, α relates to the magnitude and direction of the radial
stress, and r and θ are the polar coordinates. The principal
stress directions which diagonalize σr,θ in Eq. (1) are r̂ and θ̂
(see Supplement 1). This enables us to write the photoelastic
equation for isotropic materials, as well as for some anisotropic
materials including Si (see Supplement 1) as:

nr − nθ = C(θ)(σr − σθ ) = C(θ)
2α
r2 , (2)

where nr, nθ are refractive indices along the principal axes and
C(θ) is a material-dependent photoelastic constant. C(θ) is con-
stant for isotropic materials, whereas it can be decomposed into
harmonic functions of θ for Si (see Supplement 1).
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Fig. 1. Compressive stress resulting from a simple laser-written
structure on its surroundings is shown in (a), with the associated
transmission microscope image in (b) and experimental retardance
map in (c). The orange contour in (c) and the green contour in (f) are
plotted in (d), along with the cos(2θ) function. The computational
model of the basic micro-structure is shown in (e), along with
the associated retardance map in (f), evaluated with the developed
model.

Then, the Jones matrix associated with the PH model can be
written in polar coordinates as:

T ≡ ei2πnθ d/λ

[︃
ei∆ϕ 0
0 1

]︃
r,θ

. (3)

Here, ∆φ is the phase difference acquired by the radial and
azimuthal polarizations, given as:

∆φ =
2πd
λ

(nr − nθ ) =
2πd
λ

C(θ)
2α
r2 , (4)

Applying coordinate transformations, T can also be written in
the Cartesian coordinates basis as (see Supplement 1):

T ≡

[︃
ei∆ϕ cos2 (θ) + sin2 (θ) (ei∆ϕ − 1) sin (θ) cos (θ)
(ei∆ϕ − 1) sin (θ) cos (θ) ei∆ϕ sin2 (θ) + cos2 (θ)

]︃
x,y

.

(5)
Interferometric phase imaging with x̂- and ŷ-polarized light
allows extraction of diagonal elements of T (T11 and T22). These
can be used to map the retardance between the x̂ and ŷ directions,
given as B0 (See Supplement 1):

B0 = φy − φx = arg (T22) − arg (T11). (6)

We aim to find the simplest function that describes salient fea-
tures of the retardance induced by laser writing. In our analysis
detailed in Supplement 1, section 1, we observe that for isotropic
materials, as well as for Si, B0 can be approximated with the
following simple form, in particular for large r:

B0(r, θ) = βr−2 cos (2θ), (7)

where β is a proportionality constant. As we are only interested
in the region r>r0, we ignore the singularity at r = 0. The solu-
tions for r<r0 can also be analyzed, and a full-field solution may
be developed by regarding boundary conditions; however, it is
beyond the scope of this Letter. The B0 function can be written
in Cartesian coordinates as:

B0(x, y) = β
(︁
x2 + y2)︁−1 cos

(︂
2 tan−1

(︂ y
x

)︂)︂
. (8)

We recall that B0(x, y) describes the retardance caused by a low-
diameter, cylindrically symmetric unit. Then, we consider an

extended laser-written pattern denoted as LW(x, y), which can
take values between 0 and 1, where 0 (1) denotes pristine (laser
modified) material. The retardance due to this general laser-
written pattern can be generated as the spatial superposition of
B0(x′, y′) functions, centered at different locations (x′, y′), by
exploiting the linearity of the stress tensors [19]. This process
can be written as a two-dimensional convolution:

B(x, y) = LW(x, y)⊛ B0(x, y). (9)

LW(x, y) is the function describing the laser-written geometry,
and B0(x, y) term is the transfer function associating the written
pattern (LW(x, y)) to the retardance map (B(x, y)). The only
unknown parameter in this relation is the scaling parameter β
from Eq. (8), which is to be determined from experiments. We
note that Eq. (9) can be expressed as multiplication in the Fourier
domain using the convolution theorem:

B(x, y) = FT−1
[FT [LW(x, y)] .FT [B0(x, y)]] . (10)

This allows rapid calculation of retardance patterns from
complex laser-written areas using the Fast Fourier Transform
(FFT).

In order to test our model, we start by evaluating the basic
cylindrically symmetric structure illustrated in Fig. 1(a). The
laser writing is performed with a custom-built nanosecond laser
(∼ 10 ns), centered at λ = 1.55 µm, with 2 µJ pulse energy
and 150 kHz repetition rate, and is set to circular polarization
(see Supplement 1, sections 2 and 3) [4]. The beam is focused
directly inside Si, irradiating the sample for 3 s. The microscope
image of the fabricated structure is shown in Fig. 1(b), with
the measured retardance map given in Fig. 1(c). The retardance
analysis is performed with a home-built interferometric phase
microscope, using a continuous-wave laser of λ = 1.058 µm
(see Supplement 1, section 4). The two phase images from the
microscope are recorded with orthogonal polarizations (along
the y and x axes), where their difference is used to evaluate
the final retardance map. For simplicity, we approximated the
micro-structure with a Gaussian profile of width equal to the
experimental structure (Fig. 1(e)). Then, this geometry is con-
volved with the transfer function using Eq. (10), producing the
retardance map Fig. 1(f). Comparing Figs. 1(c) and 1(f), we
observe that the model fairly closely predicts the retardance
around the basic laser-written geometry.

The versatility of the model may be checked by two further
considerations: (i) its predictive capability for general patterns,
and (ii) its potential for enabling novel stress-based optics. In
order to evaluate the former, we generate a complicated laser-
written shape and compare its measured retardance map with
the prediction of our model. A five-pointed star pattern is created
inside Si (Fig. 2(a)), and then the associated retardance map is
acquired with interferometric phase microscopy (Fig. 2(c)). Our
analysis suggests that this map can, in principle, be estimated
by the convolution of laser-written geometry (Fig. 2(a)) with
the unknown transfer function (Fig. 2(b)). We computationally
replicate the star pattern (Fig. 2(d)) and then operate it with
the estimated transfer function in our model (Fig. 2(e)). The
resulting retardance map is shown in Fig. 2(f).

The striking similarity between Figs. 2(c) and 2(f) satisfies
the first consideration given above. The minor differences are
likely caused by fabrication and imaging artifacts, as well as
the assumption of z-independence (pressurized hole model).
We further observe that even though our method focuses only
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Fig. 2. (a) Transmission microscope image of a laser-written
star pattern. (b) Unknown transfer function from written pattern
to retardance. (c) Experimental retardance map. (d) Computational
recreation of the star shape. (e) Transfer function in our model.
(f) Predicted retardance map from the model. The borders of laser
writing is indicated with black lines in (c) and (f).

on non-modified regions, the model also correctly predicts the
retardance in modified regions. This is possibly due to the fact
that retardance in laser-written areas is affected by the stress
induced by their surrounding medium. These results indicate that
our analytical estimates can be used to predict the retardance map
of laser-written patterns in Si, without any need for extensive
simulations, which is a significant advance.

The second consideration, i.e., introducing novel optical func-
tionality, may be satisfied by fabricating laser-written wave
plates inside Si. Thus, we worked on a multi-level architecture to
accumulate the high retardance required for wave plates (π/2 for
QWP and π for HWP). Towards this goal, an unprocessed area
is sandwiched and compressed between two distinct multilevel
arrays (Fig. 3(a)). The geometry of the active area (birefringent
unmodified region) is designed as 2 × 1.2 mm2 over the x–y
plane. To keep the laser-written volume and thus fabrication
time to a minimum, we used pulse energy of 2 µJ creating 5
µm structures with 5 µm separation (along the x axis). Circular
polarization is used for writing, and the fabrication parameters
are systematically changed to tune the retardance over the active
area. The effect of two architectural parameters is evaluated,
i.e., the total thickness along the x dimension and the number of
levels or sheets along the z dimension (Fig. 3(a)).

We first use our model to predict the induced retardance
based on the thickness of single-level patterning. In order to
fix the free parameter (β in Eq. (8)), we performed a cali-
bration experiment, where an active area is created from a
pair of 250 µm-thick single-level patterns. This design is repli-
cated computationally, and the ratio between the experimental
retardance and the raw value from the model is used as the
scaling parameter, β. Different thicknesses are modelled (500
µm, 750 µm, and 1000 µm) using this scaling parameter and
are shown with the dark blue dashed curve in Fig. 3(b). The
corresponding measurements at 1058 nm wavelength are given
with the red data set in Fig. 3(b). We achieve 1.26 rad of retar-
dance with 1-mm-thick single-level writing, which corresponds
to 80 MPa stress (Supplement 1, section 5). The retardance
maps from the experiment and model are shown for the 750
µm-thickness case in Figs. 3(c) and 3(d), respectively. The sim-
ilarity between the predicted and experimental retardance maps
again indicates our high qualitative and quantitative prediction
capability.

Fig. 3. (a) Architectural design for the wave plates. (b) Retardance
is averaged over 1 × 1 mm2 of the active area and is shown for
different thicknesses and number of levels. The experimental results
are shown with empty circles, and the analytical model predictions
are given with crosses. The model is calibrated with the 0.25-mm-
thick experimental data points. The retardance values close to HWP
and QWP operation are encircled at 3.25 rad and 1.60 rad. The
experimental retardance map for the 0.75-mm-thick, single-level
data, and the corresponding model prediction are given in (c) and
(d), respectively. The averaged 1 × 1 mm2 area is indicated in (c)
and (d) with black squares. Color bar applies to both (c) and (d).

Next, we aim to increase the retardance for a given thickness
value and inquire the effect of multiple subsurface levels, as
suggested in Fig. 3(a). Individual levels have a length of 100
µm and are written with 150 µm center-to-center distance, along
the z axis. We performed experiments evaluating the retardance
with increasing levels. The results are plotted in Fig. 3(b) with
orange- and yellow-colored data sets for two- and three-levels;
along with corresponding analytical predictions. The calibration
for β in multilevel systems is performed with the 250 µm-
thickness data for each level. We find that QWP operation is
almost exactly attained (π/2 + 0.03, 1.9 % difference) with two
levels and 750 µm thickness. HWP operation is also achieved
(π + 0.11, 3.5 % difference) exploiting three levels with 750 µm
thickness (Fig. 3(b)). We note that these correspond to the first
polarization-control optics created inside Si.

The clear-aperture design is ideal as there is no light scatte-
ring within the active area. It has the added advantage that any
fabrication imperfections in the modified regions do not directly
affect the operation. Further, our tests confirmed HWP opera-
tion at the 1310 nm wavelength, indicating that the operation
window may be further increased (see Supplement 1, section
4). A potential limitation of the model may arise from effects
that could potentially be observed in larger-volume modifica-
tions (e.g., failure of the plane strain model). We anticipate
that stress engineering can help advance the accuracy of the
design and introduce additional polarization control into the
wafer.

We move on to the verification of HWPs as plug-and-play
free-space optical elements. The sample is placed between a
commercial HWP and a polarizer (Fig. 4(a)). Two sets of data
are recorded at 1058 nm, one with pristine Si sample and the
other with the laser-written HWP of 3.25 rad retardance (3 level,
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Fig. 4. (a) HWP characterization scheme based on Malus’s law.
(b) Transmitted intensity as a function of input polarization passing
through the active region is compared with control experiment. (c)
Phase difference between these curves defines the retardance, found
as 3.23 rad. This is in strong agreement with phase microscopy
results (3.25 rad) acquired from the retardance map. (d) and (e)
Intensity images for maximum and minimum transmissions, respec-
tively. Data in (b) are averages over the 1 × 1 mm2 active area,
indicated with green squares in (d) and (e).

0.75 mm thickness). The polarization state of the linearly polar-
ized input light is controlled with the rotation of HWP, with 10◦

increments. The polarizer is set to pass only diagonal polariza-
tion (135◦ from +x axis). The transmitted intensity is averaged
over 1 × 1 mm2 area and is plotted in Fig. 4(b). To eliminate
the effects of inhomogeneity of the input beam, curves for every
pixel are normalized based on the maximum value in Fig. 4(b).
Since pristine Si is not birefringent, the transmitted light pre-
serves its polarization. Thus, light is completely blocked for 45◦

input polarization and completely passes through for 135◦ polar-
ization (Fig. 4(b), blue curve). Further, the expected sinusoidal
behavior from the Malus’s law is reproduced [20]. In contrast
the behavior is transformed when the light passes through the
fabricated HWP. The light is now completely blocked at 135◦

and transmits fully at 45◦ (Fig. 4(b), red curve). This indicates
that the phase difference between blue and red curves is around
π, where the active area acts as a second HWP, as expected. The
phase difference between the curves in Fig. 4(b) corresponds to
the retardance value of the active area. This value is computa-
tionally found from Fourier analysis as 3.23 rad and is in strong
agreement with the 3.25 rad acquired from phase microscopy
(Fig. 4(c)). We also show the maximum and minimum trans-
mittance images in Figs. 4(d) and 4(e), respectively, along
with the averaged active area. This set of observations reflects
the uniformity and performance of laser-written subsurface
HWPs.

In summary, we developed a general framework for polariza-
tion control in Si. We achieved this by modelling laser-written

structures with the pressurized hole model and formulating a
transfer function that can be used to predict general stress-
induced retardance maps. The method is based on FFT-based
operations, rapidly and accurately predicting the retardance of
complex patterns. Further, we applied the approach to design
and experimentally confirm laser-written patterns of high retar-
dance (HWP, 3.25 rad). Then, 3D nonlinear laser lithography
facilitated achieving the necessary stress. These optical elements
constitute the first wave plates inside Si.
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