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Preface

Electronic Engineering is a wonderful profession. It is a synthesis of many
diverse subjects such as applied mathematics, probability theory and physics.
However, the most exciting part of Electronic Engineering is that it combines
the knowledge in these well-established fields with the sense of achievement in
designing and eventually constructing an actual instrument.

Electronic Engineering education is undertaking the challenge of teaching
young individuals how to start from basic sciences and end up in finished, work-
ing, real-life, touchable instruments.

This book is one result of the curriculum renovation activities in the Electri-
cal and Electronics Engineering Department of Bilkent University. Everybody
involved in EE education knows a fundamental problem of introducing the “en-
gineering” part relatively late during the education period. The new curriculum
aims at introducing and developing engineering skills at an early stage.

As part of the new curriculum, a new introductory analog electronics course
is introduced to the first semester of the second year. This course had to have a
solid experimental emphasis. The course had to serve as the first circuit theory
course as well. A great book by D.B. Rutledge, The Electronics of Radio, is an
excellent response to the above considerations. The Electronics of Radio is a
text for a course lasting two quarters. This book is an effort to provide similar
material for a 14-week semester course.

RF electronics courses had always been senior year courses, if not graduate
courses. It was always a problem to develop the lab skills of a student beyond
audio frequencies. The students were not exposed to components, materials,
etc., and information on materials available to the designer, timely, during their
undergraduate education. Following observations were critical when the struc-
ture of the new course was determined:

1. Learning electronics, both theory and practice, demands the enthusiasm
of 2nd-year students. Only after being exposed to electronics and practical
circuit theory at the very beginning, students can choose their specializa-
tion accurately.

2. Electronic parts, which can work at HF are now available at a very low
cost. This matter is particularly important in undergraduate courses from
the “laboratory work cost” point of view.

The course is structured on a scenario of constructing an HF radio transceiver.
Topics in analog electronics in the range of 100 Hz to 30 MHz are covered.
The block diagram concept is introduced and used. Passive electronic com-
ponents (R, L, C, diode, crystals, etc.), bipolar-junction-transistors and inte-
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grated circuits, as active devices, are discussed. Filters, power supplies, audio
amplifiers, speakers, microphones, radio amplifiers, oscillators, mixers, inter-
modulation, and antennas are progressively introduced towards the construc-
tion of the transceiver. Minimum mathematical background and definitions
(such as the solution of first-order differential equations and phasors) are intro-
duced only when necessary. All terminology and jargon are introduced. A PCB
of the transceiver is provided with the course kit and components.

Another aspect of the course is that every student must possess a soldering
iron, de-soldering pump, a multimeter, a scientific calculator and a set of hand
tools. Possessing such electronics-specific tools improves the ties and commit-
ment to the discipline and the enthusiasm to learn electronics. Compared to
EE education thirty years ago, the students suffer an identity problem today.
Thirty years ago, every engineering student had to have a set of drafting tools
and a slide rule right at the beginning of freshman. Computers replaced these
today. Computers, however, are anonymous. Students of almost every discipline
use computers. Computers are not specific to electronics students.

These considerations made this book different from more conventional elec-
tronics textbooks. The book tells the story of making a transceiver and intro-
duces various concepts and other information only when necessary. In other
words, the related topics in a subject are not, generally, collected together in
the same section in this book. They are given at the relevant stages of the
transceiver construction.

Acknowledgements:
Many people contributed both to design the course and to the course mate-

rial. The author wishes to acknowledge the tremendous effort that Müjdat Bal-
antekin had put into this work. The laboratory material for this course would
have never been realized without the support provided by Ergün Hırlakoğlu,
İsmail Kır and Ersin Başer. One hundred students of the class of 2001 provided
invaluable feedback. The author acknowledges their contributions, effort and
positive energy. Prof. A. Altıntaş, Prof. A. Atalar, Prof. B. Özgüler, Dr. T.
Reyhan, Dr. S. Topçu, Dr. E. Tın, Prof. C. Yalabık, of Bilkent University and
E. Ceyhan of ERE Corp. made many suggestions and critically reviewed the
text. Finally, the author is indebted to N. Özönder of Telmek Corp. and B.
Arıkan of Arıkan Elektronik, for an immaculate TRC-10 instrument tray and
PCB.

Hayrettin Köymen
August 25, 2002
Ankara
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Preface to the Fourth Edition

The fourth edition of the book uses a substantially modified version of TRC-10
and it is now called TRC-11. It has a fixed frequency operation at 27.00 MHz
corresponding to a wavelength of 11 m. Its receiver can operate, while the
transmitter is turned on. This property enables the full testing of the transceiver
without a need for a second transceiver. TRC-11 includes an automatic-gain-
control circuit and LEDs are added as signal level and power indicators.

The first chapter is a summary of basic concepts of electronic communica-
tion. The chapter also has short descriptions of the basic building blocks of the
transceiver.

The second chapter introduces most of the components existing in TRC-
11: voltage and current sources, resistors, capacitors, and inductors. After the
explanation of Kirchhoff’s laws, the chapter presents time-domain solutions of
first-order RC and RL circuits.

The third chapter is about frequency-domain solution of circuits excited by
sinusoidal signals using the phasor notation. Transfer functions of linear cir-
cuits with any order are studied. Thévenin and Norton equivalent circuits are
introduced, and the superposition principle is described. Since TRC-11 con-
tains an operational amplifier, it is investigated in some detail. Many practical
operational amplifier circuits are given.

The fourth chapter introduces two nonlinear devices: Diodes and bipolar
junction transistors. Piecewise linear analysis methods of first-order circuits
containing diodes are given. Terminal characteristics of bipolar transistors are
introduced. Then, the biasing and small-signal analysis of transistors are given.

Being a transceiver, TRC-11 has also tuned circuits. Chapter five is about
parallel and series RLC circuits. Limitations of real inductors are discussed and
simple transformer equivalent circuit is given. The non-ideal behavior of real
inductors is discussed in some detail.

Filters in a receiver play a crucial role. The filter design is introduced in
chapter six. Since TRC-11 has a crystal filter, crystal filter design is also dis-
cussed.

Since TRC-11 uses amplitude modulation, a demodulation technique using
diodes are explained in chapter seven. This chapter also describes automatic
gain control system using a PIN diode.

TRC-11 uses the superheterodyne concept, which requires mixers and oscil-
lators for frequency conversion. The eighth chapter has a brief discussion on the
operation principles of a mixer as a building block. A few types of oscillators
are discussed.

The ninth chapter is an introduction to antennas, radiation impedance and
propagation. Basic antenna types like monopole and dipole antennas are de-
scribed.

The final chapter is an introduction to the operation principles of semicon-
ductor diodes and bipolar-junction-transistors. For this purpose, a simplified
theory of semiconductor devices are given.

Several examples are added at the end of each chapter to ease understanding
the concepts.

Experimental work associated with each chapter has a corresponding pre-
liminary work, which should be completed before the students appear at the
laboratory.
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Appendices contain the schematics and datasheets of components used in
TRC-11, troubleshooting hints, and answers to selected problems.

To simplify mounting and soldering, all components in TRC-11 are old-
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Chapter 1

SIGNALS AND
COMMUNICATIONS

1.1 Analog and Digital Electronics

In the modern world, electronics is everywhere. Especially, the mobile revolution
increased the number of electronic devices and our dependence on them. A block
diagram of a modern electronic device is composed of digital and analog parts
as shown in Fig. 1.1. Since the real world is not digital, the interface between
the world and electronic devices has to be through analog components. Analog
sensors, like an electronic compass, an electronic thermometer or an acceleration
sensor, are used as input devices. Analog transducers, like a microphone, an
antenna, a buzzer, a loudspeaker, or a motor are used to convert energy from
one form to another. Typically, input sensors and transducers are connected to
analog circuitry, before their signals are converted to digital form by analog-to-
digital (A/D) converters. After digital processing, the signals are converted to
the analog world by digital-to-analog (D/A) converters. These signals are fed
to analog circuitry for final connection to the analog world.

This text deals only with analog electronics. Analog electronics requires a
good knowledge of physics, mathematics and circuit theory. Students of this
course must have taken basic physics and mathematics courses. This text pro-
vides a beginner-level circuit theory. We believe that best learning occurs not
by listening to a lecture or reading a text, but rather by doing, experimenting
or building things. This textbook aims to provide a learning environment of
analog electronics by guiding students to build a working communication device
composed of analog parts only with no digital parts. Even though this is not the
modern approach, we think it is very instructive for learning analog electronics.

Digital circuit
Analog

Circuit

Analog
CircuitSensor

TransducerTransducer A/D
Converter

D/A
converter

Figure 1.1: A modern electronic device.

Koymen & Atalar 1 ANALOG ELECTRONICS
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1.2 Electronic communications

Electronics are commonly used to send and receive signals, such as sound and
vision, between parties. A transmitter converts signals into a form, so that
they can be transmitted in the air as part of the electromagnetic spectrum.
They are received by a receiver, where they are converted back to the original
form. Two communicating parties can be quite far from each other, so the term
telecommunication is used to describe this form of communication.

This book is structured around the building and testing a transceiver (in-
spired by a great book by Rutledge [1]), TRC-11, operating with a 11-meter
wavelength in the amateur band (27 MHz). The name is generic: TRC stands
for transceiver and 11 indicates that it works with the 11-meter wavelength. In
the following, we describe the basic concepts and main blocks of a transmitter
and receiver while keeping the mathematics as little as possible.

1.3 Voltage, Current and Frequency

The two variables in any electrical circuit are voltage, v(t), and current, i(t).
Both of these variables can be time varying or constant. Voltages and currents
that do not change with respect to time are called DC voltages and currents,
respectively. The acronym DC is derived from direct current.

Voltages and currents that vary with respect to time can, of course, have
arbitrary forms. A branch of applied mathematics called Laplace analysis, or its
special form Fourier analysis, investigates the properties of such time variation,
and shows that all time varying signals can be represented in terms of linear
combination (or weighted sums) of sinusoidal waveforms. A sinusoidal voltage
and current can be written as

v(t) = V1 cos(ωt+ θv) (1.1)

i(t) = I1 cos(ωt+ θi) (1.2)

V1 and I1 are called the amplitudes or the peak values of voltage and current, and
have units of Volts (V) and Amperes (A), respectively. ω is the radial frequency
with units of radians per second (rps) and ω = 2πf , where f is the frequency of
the sinusoid with units of Hertz (Hz), named after German physicist Heinrich
Rudolf Hertz (1857–1894). θ is the phase angle of the waveform, expressed in
radians or degrees. These waveforms are periodic, which means that it is a
repetition of a fundamental form every T seconds. T is called the period of the
waveform with T = 2π/ω = 1/f seconds (sec).

Quite often, sinusoidal waveforms are referred to by their peak amplitudes
or peak-to-peak amplitudes. The peak amplitude of v(t) = V1 cos(ωt) is V1 volts
peak (or Vp) and peak-to-peak amplitude is 2V1 volts peak-to-peak (or Vpp).

We can see that a DC voltage is in fact a sinusoid with ω=0 rps. Sinusoidal
voltages and currents with non-zero frequency are commonly referred to as AC
voltages and currents. The acronym AC comes from alternating current.

1.4 Wavelength

Electromagnetic waves travel at the speed of light, c = 3.0 × 108 m/sec in the
air (or vacuum). This speed is the same as the speed of light in air, since light
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Light waves Frequency Wavelength

Infrared (IR) 300 GHz–429 THz 1 mm–0.7µm
Visible light 429 THz–750 THz 0.7µm–0.4 µm
Red light 429 THz 0.700 µm
Green light 549 THz 0.546 µm
Blue light 688 THz 0.436 µm

Ultraviolet (UV) 750 THz–30 PHz 0.4 µm–0.3 nm

Table 1.1: Frequencies and wavelengths of light waves. Refer to page 310 for
the definition of unit prefixes.

is also an electromagnetic wave at a much higher frequency. The wavelength of
a wave can be written in terms of its speed, c, and its frequency, f , as

λ =
c

f
(1.3)

where λ is the wavelength in meters. Table 1.1 shows the frequency and wave-
length of light waves.

Radio waves used in electronic communication are also electromagnetic waves.
Table 1.2 lists some commonly used frequencies and the corresponding wave-
lengths.

Radio waves Frequency Wavelength

AM radio band 540 kHz–1630 kHz 556 m–184m
Short-wave radio band 5.9 MHz–26.1 MHz 50.8 m–11.5 m

Toy radio control 27 MHz 11.1 m
TRC-11 27 MHz 11.1 m

TV Channels 2–6 54 MHz–88 MHz 5.56 m–3.41 m
FM radio band 88 MHz–108 MHz 3.41 m–2.78 m

TV channels 7–13 174 MHz–216 MHz 1.72 m–1.39 m
TV channels 14–70 470 MHz–806 MHz 64 cm–37 cm

Cellular phone (GSM-900) 880 MHz–960 MHz 34 cm–31 cm
GPS 1575 MHz 19.0 cm

Cellular phone (GSM-1800) 1710 MHz–1880 MHz 17.5 cm–16.0 cm
Cordless phone (DECT) 1880 MHz-1900 MHz 16.0 cm–15.8 cm

Wi-Fi/Bluetooth 2.402 GHz–2.483 GHz 12.49 cm–12.08 cm
Microwave oven 2.45 GHz 12.2 cm

Satellite TV receiver 10.7 GHz–12.75 GHz 2.80 cm–2.35 cm
Traffic radar 24 GHz 1.25 cm

Table 1.2: Frequencies and wavelengths of radio waves.

Fig. 1.2 is a diagram showing the frequency spectrum with labels given to
different bands and the corresponding wavelengths.

The formula of Eq. 1.3 also applies to sound waves, which travel in a medium.
Sound waves propagate at a speed of 340 m/s in air and 1500 m/s in water.
Therefore, a sound wave at a frequency of 1.0 kHz has a wavelength of 34 cm
in air and 1.5 m in water.
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Figure 1.2: The frequency spectrum and its bands: VLF (very low frequency),
LF (low frequency), MF (medium frequency), HF (high frequency), VHF (very
high frequency), UHF (ultra high frequency), SHF (super high frequency), EHF
(extremely high frequency), FIR (far infrared), MIR (mid infrared), NIR (near
infrared). Some bands reserved broadcast radio transmission (AM, SW and
FM), TV transmission, cellular phone (GSM) and local-area wireless (Wi-Fi)
are also shown.

♦ TRC-11 uses electromagnetic waves in the HF band at the frequency of
27.00 MHz with a wavelength of 11.1 m. This is in a frequency range
reserved for amateur radio.

1.5 Oscillators

Electronic circuits that generate voltages of sinusoidal waveform are called si-
nusoidal oscillators. There are also oscillators generating periodic signals of
other waveforms, among which square wave generators are the most popular.
Square wave oscillators are predominantly used in digital circuits to produce
time references, synchronization, etc. For example, an electronic wristwatch
has an oscillator at a frequency of 32768 Hz, which is easily divided to 215 using
a 15-stage divide-by-two circuit to generate 1.0000 pulses per second*. Function
generators are capable of producing a number of periodic signals like sinusoidal,
square, triangular and sawtooth waveforms, with frequencies and amplitudes
adjustable by the front panel buttons (see for example Fig. 1.3).

We use sinusoidal oscillators in communication circuits for various reasons.
In most cases, the oscillators determine the frequency of operation.

*1.0000 expresses the precision of the quantity of one pulse per second. Refer to Appendix B
for significant figure notation.
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Figure 1.3: SRS DS345 function generator.

A square wave of 2 V peak to peak amplitude with a 1 V offset is depicted
in Fig. 1.4. Such a square wave can be represented in terms of sinusoids as a
linear combination:

s(t) = a0 +

∞∑
n=1

bn sin(nωt) = 1 +
4

π
sin(ωt) +

4

3π
sin(3ωt) +

4

5π
sin(5ωt)

+
4

7π
sin(7ωt) +

4

9π
sin(9ωt) + . . . (1.4)

where a0 is the average (or DC) value of s(t), and bn’s are the magnitudes of
the harmonics. In this particular case, we have a0=1 and bn = (2/n)[1−(−1)n].
Note here that

0

2

1

TT/2
time

am
pl

itu
de

 (
V

)

Figure 1.4: A square wave signal

� There are an infinite number of sinusoids in a square wave;

� The frequencies of these sinusoids are only odd multiples of ω, which is a
property of square waves with an equal duration of 2’s and 0’s— we call
such square waves as 50% duty cycle square waves;

� The amplitude of sinusoids in the summation decreases as their frequency
increases. We refer to the sinusoids with frequencies 2ω, 3ω, 4ω, . . . , nω
as harmonics of the fundamental component, sinωt.
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We can obtain an approximation to a square wave by taking a0, the fundamental,
and only a few harmonics into the summation. As we increase the number
of harmonics in the summation, the constructed waveform becomes a better
representative of the square wave. This successive construction of a square
wave is shown in Fig. 1.5: Even with only three terms the square wave is

0 T/5 2T/5 3T/5 4T/5 T 6T/5
-0.5

0

0.5

1

1.5

2

2.5

a
0
+Fundamental

Up to 3rd Harmonic
Up to 7th harmonic
Up to 59th harmonic

Figure 1.5: Constructing a square wave from harmonics, (a) only a0+ funda-
mental, (b) all terms up to 3rd harmonic, (c) all terms up to 7th harmonic, (d)
all terms up to 59th harmonic.

reasonably well delineated. It looks more like a square wave as the number of
added harmonics increase.

A common graphical representation of a signal with many sinusoidal com-
ponents is to plot the line graph of the amplitude of each component versus
frequency (either f or ω). This is called the spectrum of the square wave or its
frequency domain representation. The spectrum of this square wave is given
in Fig. 1.6, which clearly illustrates the frequency components of the square
wave. The figure shows that the square wave, being a periodic signal, has en-
ergy only at discrete frequencies, more specifically only at the odd harmonics of
the fundamental.

♦ TRC-11 has two oscillators, one at the frequency of 12.00 MHz, and the
other at 15.00 MHz.
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Figure 1.6: The spectrum of the square wave of Fig. 1.4

1.6 Modulation

We frequently use electromagnetic waves to transmit information from one place
to another. The information, for example, voice or music, must first be converted
into an electrical voltage, vm(t). We, then, convert the electrical signal to an
electromagnetic wave to transmit it over some distance to the receiver. The
conversion of vm(t) to an electromagnetic signal occurs by using an antenna.
We will see in Chapter 8 that the size of the antenna should be comparable to
the wavelength of the signal for efficient conversion.

The wavelength of an electrical voice or music signal is measured in hundreds
of kilometers. Using an antenna of that size is obviously not practical. To
make the antenna size small, we need to use a much higher frequency sinusoid
(called the carrier) with a much smaller wavelength to carry the information. In
order to transmit voice or music, we need to make one parameter of this carrier
sinusoid dependent on the information. Merging the information-carrying signal
on a high frequency carrier sinusoid is called modulation.

There are three parameters that we can modify in a sinusoid: amplitude,
frequency and phase. In the amplitude modulation (AM) method, the amplitude
of a sinusoid is made dependent on vm(t). Let us assume that vm(t) is a simple
signal, Vm cos(ωmt). In order to modulate the amplitude of a carrier signal,
Vc cos(ωct), we construct the signal,

v(t) = Vc cos(ωct) + vm(t) cos(ωct) = Vc

(
1 +

Vm

Vc
cos(ωmt)

)
cos(ωct) (1.5)

vm(t) is called the modulating signal. In AM, the maximum peak variation
of |vm(t)| must always be less than Vc, otherwise some parts of vm(t) get lost.
Vc[1+(Vm/Vc) cos(ωmt)] part in AM signal is called the envelope. An AM signal
is depicted in Fig. 1.7(b).

The depth of modulation is determined by the maximum value of the nor-
malized modulation signal |vm(t)/Vc|. The modulation index, m, is defined as

m =

∣∣∣∣Vm

Vc

∣∣∣∣
max

(1.6)

If m = 1, AM signal is said to have 100% modulation.
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(c)

Figure 1.7: (a) Modulating signal, vm, (b) AM modulated signal, (c) FM mod-
ulated signal.

Other parameters that can be modulated in a sinusoid are frequency and
phase. Different forms of amplitude modulation and frequency modulation (FM)
are used in analog communication systems. In FM, we construct the following
signal:

v(t) = Vc cos

(
ωct+ kf

∫
vm(t)dt

)
= Vc cos (ωct+ βVm sin(ωmt)) , (1.7)

such that β = kf/ωm and ω(t) = dθ(t)/dt = ωc + kfvm(t). Here, we change the
instantaneous frequency of the carrier signal around the carrier frequency, ωc,
according to the variation of modulating (information) signal, while the envelope
of the signal stays constant. An FM modulated signal is shown in Fig. 1.7(c).

Long wave and middle wave radio broadcasting are done by AM, and radio
broadcasting in the 88–108 MHz band is done by FM. Analog terrestrial televi-
sion broadcasting employs a version of AM (called vestigial side-band AM) for
image and FM for sound.

♦ TRC-11 employs amplitude modulation with a carrier frequency of 27.000 MHz.

1.7 Amplifiers

The most frequently done operation on signals is amplification. The signal
received at an antenna is often very weak, may be at power levels of a few tens
of fW (1 femtoWatt=1×10−15W). This power level corresponds to a few µV
(microvolt, µ=10−6) into a 50 Ω resistance, which is a typical value of input
resistance for a receiver. This signal level must be increased so that it can be
demodulated, and further increased so that it can be heard. The device that
performs this function is called an amplifier.

Amplifiers relate the signal at their input and their output by a gain. We
are usually interested in two types of gain, voltage gain and power gain. We
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Vi VoA

Figure 1.8: An amplifier with an input voltage of Vi and an output voltage of
Vo.

dB −3 0 3 6 7 10 13 16 20 30 40
A 0.70 1.0 1.4 2.0 2.2 3.2 4.5 6.3 10 32 100
G 0.50 1.0 2.0 4.0 5.0 10 20 40 100 1000 10000

Table 1.3: dB conversion table

denote voltage gain by A and power gain by G:

A =
Vo

Vi
and G =

Po

Pi
(1.8)

An amplifier with a voltage gain of A is shown as a block diagram in Fig. 1.8.
Voltage gain or power gain are unitless quantities. We may use decibels (dB)
to describe the amount of gain. We can express the gain expression above in
decibels as,

AdB = 20 log10

(
Vo

Vi

)
, and GdB = 10 log10

(
Po

Pi

)
(1.9)

where the logarithm function is with respect to base 10. The coefficient is 10
for power gain and 20 for voltage or current gain. With this definition, both
a voltage gain and the corresponding power gain yield the same value in dB.
For example, if a peak voltage of V1 appears across a resistor R, then the peak
current through R is V1/R, and the average power delivered to R is V 2

1 /2R.
Now, if this voltage is amplified two folds and applied across the same resistor,
then there is a voltage gain of A = 2 and a power gain of G = 4. In decibels,
the value of both AdB and GdB is 6 dB. Also, note that 3 dB corresponds to a
power gain of 2 and a voltage gain of

√
2.

Decibel notation can also used to define absolute levels. For example, 0.5 mil-
liwatt of power is expressed in decibels as −3 dBm. Here, “m” denotes that
this value is relative to 1 milliwatt. Similarly, 20 Watts can be expressed as
43 dBm. Another way of writing absolute levels in decibels is to directly write
what it is relative to. For example, we can write 32 µV as “30 dB re µV”. Some
easy-to-remember approximate dB values are given in Table 1.3.

♦ TRC-11 has six amplifiers: One DC amplifier for automatic-gain-control
and for driving a light-emitting-diode, two audio (20 Hz–20 kHz) ampli-
fiers, two amplifiers at 15 MHz, and one amplifier at 27 MHz.

1.8 Mixers

We frequently want to shift the frequency of the information carrying sinusoid.
For transmission purposes, we want to increase the frequency. The process of
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A cos (ω1t)

B cos (ω2t)
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2

cos (ω1+ω2)t + cos (ω1-ω2)t)(IF

LO

RF

Figure 1.9: A mixer multiplying two sinusoidal signals at different frequencies.

moving the frequency to a higher frequency is called up-conversion. When the
frequency of the received signal must be reduced, we perform a down-conversion.
For up-conversion and down-conversion operations, we use mixers.

Mixers are basically analog multiplier circuits. They have two input ports
and one output port, labeled as RF, LO, and IF. The output signal is the product
of the two input signals. Suppose, for example, that the inputs of a mixer have
two sinusoidal signals, A cos(ω1t) and B cos(ω2t), as shown in Fig. 1.9. The
output signal is the product signal: AB cos(ω1t) cos(ω2t). Using trigonometric
identities, we can write the output signal as

AB

2
(cos(ω1 + ω2)t+ cos(ω1 − ω2)t) (1.10)

Hence the output signal is at the sum, ω1 + ω2, and at the difference, ω1 − ω2,
frequencies. If we need an up-conversion, we can select the sum frequency at the
higher frequency. On the other hand, if we need a down-conversion, we select
the difference frequency. For this selection operation, we need filters.

We discuss mixers in more detail in Chapter 7 on p. 264.

♦ TRC-11 utilizes one mixer to convert 27 MHz to 15 MHz in its receiver.

1.9 Filters

We employ filters to eliminate unwanted components of a signal and keep the
components we like. Most commonly used filters are classified as low-pass, high-
pass, and band-pass types.

As the name implies, a low-pass filter (LPF) allows the signals below a spe-
cific frequency to pass through the filter and attenuates (decrease their ampli-
tude) the signals of higher frequency. This threshold frequency is called cut-off
or corner frequency. This behavior of an LPF is demonstrated in Fig. 1.10: The
upper schematic demonstrates the removal of the sinusoidal component above
the corner frequency. In the lower schematic, where the input has two sinusoids
at two different frequencies, the higher frequency sinusoidal signal is rejected at
the output.

A high-pass filter (HPF) has the opposite function: It passes signals of high
frequency, while stopping low-frequency signals. (See Fig. 1.11.)

A band-pass-filter (BPF) passes signals within a specified frequency range.
It eliminates signals outside this band. Suppose we wish to keep the fundamental
component of the square wave of Fig. 1.4 at ω and eliminate the rest of the
components. For this purpose, we can use a band-pass-filter centered at ω. The
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ω > ωc
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V1 cos (ω1t) V1 cos (ω1t)

ω1 <ωc <ω2

+ V2 cos (ω2t)

Figure 1.10: Demonstration of the function of a low-pass-filter with a corner
frequency of ωc.

upper diagram in Fig. 1.12 demonstrates this action. The bandwidth is of the
filter must be sufficiently small to attenuate the nearest harmonics. Referring to
Fig. 1.5, the amplitude of the fundamental component is 4/π ≈ 1.27. Conversely,
if we use a band-pass-filter centered at 5ω, we pick the 5th harmonic of the square
wave with a peak amplitude of 4/(5π) ≈ 0.25 as shown in the lower diagram of
Fig. 1.12.

The filtering effect is not abrupt, but it is gradual. The signal components
and noise beyond cut-off frequency are not entirely eliminated, but attenuated
more and more as their frequencies are further away from cut-off. A detailed
discussion of filters can be found in Chap. 5.

♦ TRC-11 has many filters: A crystal band-pass-filter at 15 MHz, a band-
pass-filter at 27 MHz, and a number of low-pass and high-pass-filters.

1.10 Transmitter and receiver

A conceptual block diagram of a radio transmitter converting sound waves into
electromagnetic waves is depicted in Fig. 1.13. A sound wave in air at 1.0 kHz
has a wavelength of 34 cm. It is probably generated by a human mouth, hav-
ing a size comparable to this wavelength. The sound wave is converted into
an electrical signal using a microphone, having a size also comparable to this
wavelength. The small-signal output of the microphone is amplified by an am-
plifier. Since the wavelength of the electrical signal (300 km) is too long to be
transmitted by a reasonable size antenna, the signal is modulated on a carrier
at 27 MHz using a modulator, where the wavelength is reduced to 11.1 m. The
signal at 27 MHz is conveniently transmitted by a reasonable length antenna in
the form of an electromagnetic wave.

A block diagram of the corresponding receiver is given in Fig. 1.14. Elec-
tromagnetic waves received by the antenna are converted to an electrical signal
at the same frequency. Since the signal amplitude is small, it is first amplified
by an amplifier. The signal is then demodulated from the carrier to obtain the
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ω > ωc

V1 cos (ω1t)
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A cos (ωt)
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+
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V2 cos (ω2t)V2 cos (ω2t)

Figure 1.11: Demonstration of the function of a high-pass-filter with a corner
frequency of ωc.

original signal. The signal is fed to a speaker (with a size comparable to the
sound wavelength) to generate the sound waves. The sound waves are probably
heard by a human ear, whose size is also comparable to wavelength.

Since our transmitter is not the only one in the area, the receiver antenna
receives many signals from different sources. Although it is not shown in the
simplified diagram, filtering the antenna input signal that rejects all unwanted
signals is necessary for a clean reception.

1.11 TRC-11

Transceivers are wireless transmitters (TX) and receivers (RX) combined in
a single instrument. TRC-11 (see Fig. 1.15) is a transceiver operating in the
28 MHz amateur band, where a license for transmission is not necessary if the
output power is kept below a specific limit. Hence TRC-11 transmitter output
power is intentionally kept low, not to violate local electromagnetic radiation
regulations. On the other hand, the receiver sensitivity is very good, providing
communication over some distance.

TRC-11 utilizes the superheterodyne principle, which is used by most modern
radio receivers (for example, those in mobile phones) today. Superheterodyne
receiver systems use a frequency down-conversion mechanism of a mixer driven
by an oscillator: The incoming AM modulated signal is mixed with a constant
amplitude sinusoidal wave of a different frequency generated by a local oscilla-
tor. The mixer output is an AM signal at a lower and fixed frequency known
as intermediate frequency (IF), where the signal is more easily amplified in a
narrow-band amplifier chain. If a different frequency input signal is desired, it
is sufficient to change the frequency of the local oscillator, while the frequency
of narrow-band IF amplifier remains unchanged. The same principle can be
used to up-convert a low frequency AM signal to its higher frequency version for
transmission purposes. More discussion on the superheterodyne principle can
be found in p. 275.
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Figure 1.12: A band-pass-filter centered at ω filtering the fundamental compo-
nent (upper) and a band-pass-filter centered at 5ω filtering the 5th harmonic
(lower) out of a square wave with frequency ω.

λ=34cm

f=1KHz

Sound

λ=300km

f=1kHz

Electrical Electromagnetic

Amp

AntennaMicrophone

Modulator

f = 27 MHz f = 27 MHz
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Figure 1.13: A conceptual block diagram of a radio transmitter converting sound
waves into electromagnetic waves.

In its transmitter, TRC-11 does not use the up-conversion method. Instead,
the transmission frequency is generated directly by an oscillator. The signal
generated at the transmission frequency is amplitude-modulated and amplifier
to be fed to the antenna.

A block diagram of TRC-11 is shown in Fig. 1.16. A low frequency audio
input signal to the transmitter is amplified by an audio amplifier. The ampli-
fied signal is then used to amplitude modulate a 27.00 MHz sinusoidal signal
generated by an oscillator. This 27.00 MHz AM signal is amplified by a radio-
frequency (RF) amplifier and then fed to the antenna for transmission into air.
A switch (T/R switch) is used to select the transmit or receive mode for the
antenna.

A small amplitude 27.00 MHz AM signal picked by the antenna is fed to
mixer that acts like a down-converter. The mixer uses a 12.00 MHz local os-
cillator as the transmitter. The mixer’s output has two signals: The difference
frequency at 27.00-12.00=15.00 MHz and the sum frequency at 27.00+12.00=
=39.00 MHz. 15.00 MHz signal is the desired IF frequency: It is filtered by a
15.00 MHz narrow-band crystal band-pass-filter, providing the good selectivity
of the receiver. The resulting signal is amplified by a high-gain IF amplifier
chain. The amplitude demodulator block strips the AM signal of its carrier and
generates the original audio signal. This signal is then fed to a loudspeaker (or
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Electromagnetic
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SoundElectrical
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Figure 1.14: A conceptual block diagram of a radio receiver converting electro-
magnetic waves into sound waves.

Figure 1.15: Photo of a completed TRC-11 (rev. 7.1)

earphone) amplifier to drive the loudspeaker (or earphone) generating the audio
signal. The output of the amplitude demodulator is also used for the automatic
gain control circuit, which reduces the gain of the IF amplifier chain and hence
prevents a saturation if the input signal is too strong.

If the antenna also picks a neighboring signal at 26.95 MHz, this signal
will be down-converted to 26.95-12.00=14.95 MHz using a local oscillator of
12.00 MHz. Since the IF filter is strictly at 15.00 MHz, the 14.95 MHz signal
will be rejected. Therefore, very selective TRC-11 receiver only amplifies signals
at 27.00 MHz.

Although it is possible to build a transceiver with modern complex integrated
circuits in a much smaller area, for the purpose of learning and ease of soldering,
TRC-11 is intentionally built from many discrete, inexpensive, —and some old-
fashioned— components.

In the following chapters, we will study all blocks of TRC-11 starting from
the voltage regulator unit. More information about these subjects can be found
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Figure 1.16: A block diagram of TRC-11.

in a book by Nahin [2] or in any yearly edition of the Handbook for Radio
Communications published by the American Radio Relay League [3].
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1.12 Problems

1. Find the wavelengths of sound waves in air at frequencies of 20 Hz and
20 kHz. (20 Hz and 20 kHz are accepted to be lowest and highest audible
sound frequencies for most humans.)

2. Find the wavelength of your favorite FM radio station.

3. The input signal of an amplifier is given by 0.01 cos(ωot). The output
signal is measured to have peak-to-peak voltage of 1 V. Find the voltage
gain of this amplifier in dB.

4. The signal s(t) = 4 cos(ωst) is multiplied by a carrier c(t) = cos(ωot) in
a mixer. Calculate the signal at the output of the mixer as a sum of
sinusoids. Plot the magnitude of the individual sine wave components
with respect to frequency if ωs=1000 rps and ωo=5000 rps, as in Fig. 1.6.

5. Let s(t) = cos(ωst) + 2 cos(2ωst) + 3 cos(3ωst) + 4cos(4ωst), where ωs =
2πfs and fs=300 Hz. s(t) is mixed with cos(ωot) where fo=5000 Hz.
Calculate the signal at the output of the mixer as a sum of sinusoids (no
powers, no products). Plot the magnitude of the individual sinusoidal wave
components in this output signal and in s(t) with respect to frequency.

6. Let s(t) = A(t) cos(ωst). s(t) is mixed and filtered to obtain A(t) cos(ωot).
What is the signal that s(t) must be mixed with and what kind of filter
is needed?

7. Show that

tan(A+B) =
tan(A) + tan(B)

1− tan(A) tan(B)

8. Construct a square wave with three and five components and calculate the
mean square error, using a computer tool of your choice, a spreadsheet,
MATLAB, etc. Mean-square error, MSE, between two periodic functions,
f(t) and g(t) is given by

MSE =

√
1

T

∫ T

0

(f(t)− g(t))2dt

where T is the period of the functions.



Chapter 2

CIRCUIT THEORY
PRIMER

Circuits are composed of resistors, capacitors, inductors, semiconductor devices,
integrated circuits, energy sources, and many other components.* We design
circuits employing these components to process electrical energy to perform
a particular function. Circuits may contain a large number of components.
Algebra and differential equations are the tools that are used to both define
the functions of elements and their interrelations. The mathematics of circuit
analysis and synthesis, models, and set of rules developed for this purpose is
altogether called circuit theory. Circuit theory is one of the fundamental tools
of electrical engineering [4]. Although this textbook is not a circuit theory
textbook, basic rules of circuit analysis are presented. However, you should
refer to more comprehensive textbooks [5] to learn the circuit theory.

2.1 Electrons

Atoms of some materials, notably metals or acids, allow the movement of the
electrons readily. We classify such materials as conductors. Gold and aluminum
are excellent conductors, while iron and lead are not. Some materials, such as
niobium-titanium alloy, exhibit perfect conductivity, known as superconductivity
below a critical and relatively low temperature. On the other hand, atoms of
insulators do not allow the electrons to move at all. Dry wood, porcelain, quartz,
and rubber are good insulators. Materials, such as germanium and silicon,
whose electron conductivity falls midway between good conductors and good
insulators, are known as semiconductors. The addition of a small percentage
of foreign atoms into semiconductors, which is known as doping, changes the
conductivity properties dramatically. Semiconductor devices [6] provide the
enabling technology of the information age.

Electronics are all about controlling electrons. To quantify the movement of
electrons in a circuit, we use a number of terms:

� Charge represented by Q is used to measure the number of electrons.

*ARRL Handbook of Radio Communications [3] has comprehensive information on elec-
tronic components

Koymen & Atalar 17 ANALOG ELECTRONICS
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It has the units of coulombs (unit symbol C), named after the French
physicist Charles-Augustin de Coulomb (1736–1806). He is known for
developing the Coulomb’s law. Since an electron has a negative charge,
6.241×1018 electrons make up a charge of−1 C. Equivalently, the charge of
one electron is −1.602×10−19C. Positive charges may also exist. An elec-
trolyte may have positively charged ions in addition to negatively charged
ions. For example, salty water has positive Na+ and negative Cl− ions.

� Current measures the flow rate of charged particles, represented by the
letter I. If 1 C of charge moves in one second, it is called one am-
pere (unit symbol A), named after French physicist André-Marie Ampère
(1775–1836) known for developing Ampere’s law. Current is a directional
quantity. The current direction is the same as the flow direction of posi-
tive charges. Hence, 6.241×1018 electrons moving left create a current of
1 A towards the right. The current in a circuit can be measured using an
ammeter.

� Voltage quantifies the electrical potential difference between two points
in a circuit. It measures the desire for charges to move from one place
to another. It has the unit volt (unit symbol V), named after Italian
physicist Alessandro Volta (1745–1827) , who invented the first chemical
battery. 1 V of voltage can deliver 1 J (joule) of energy to 1 C of charge
(E = QV ). The potential difference between the two points is measured
using a voltmeter.

� Resistance defines the degree to which a conductor opposes the electric
current through it. The unit of resistance is one ohm (unit symbol is
Greek letter capital omega Ω), named after German physicist Georg Simon
Ohm (1789–1854). A good conductor like a copper wire has a very low
resistance; the electrons flow freely through it. Water is a relatively poor
conductor of current, so it has a higher resistance. Insulators like glass or
ceramics have very high resistance, with negligible current through them.
Resistivity represented by the Greek letter ρ is an intrinsic property of a
material that quantifies how strongly that material opposes the flow of
current. The resistivity of some common materials is listed in Table 2.1.
The unit of resistivity is Ω-cm and it defines the resistance between the
opposing faces of one cubic centimeter of the material.

The resistance of a material with a resistivity of ρ, a cross-sectional area
of A and a length of l is given by

R =
ρl

A
(2.1)

Electrical components called resistors have a predefined level of resistance,
represented by the symbol R. Their typical values range from 1 mΩ to
1 GΩ (G means 109). The resistance of a component can be measured
using an ohmmeter.

2.1.1 Water flow analogy

Since electrons are not visible, it is helpful to make an analogy to hydraulic
systems to understand the concepts.
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Material ρ, resistivity (Ω-cm)

Superconductors Niobium-titanium (below 11◦K) 0
Silver 1.59 × 10−6

Copper 1.68 × 10−6

Gold 2.44 × 10−6

Conductors Aluminum 2.65 × 10−6

Tungsten 5.6 × 10−6

Iron 9.7 × 10−6

Lead 22 × 10−6

Doped germanium 0.001 – 0.2
Pure germanium 47

Semiconductors Doped silicon 0.01 – 0.5
Pure silicon 2 × 105

Doped gallium-arsenide 0.1 – 2
Pure gallium-arsenide 1 × 108

Insulators Glass 1 × 109 – 1 × 1013

Fused quartz 7.5 × 1017

Table 2.1: Resistivity of some common materials at 20◦C.

� Charge is equivalent to the quantity or volume of water (e.g., in units
of liters). We note that in hydraulic systems the volume is only positive
hence the equivalent of negative charge does not exist.

� Current is equivalent to the flow rate of water (e.g., in units of liters/sec)

� Voltage is analogous to the pressure difference between two points in the
hydraulic system.

� Resistance is created in water pipes due to friction between water and
the pipe’s inner surface. A relatively wide pipe has a very low resistance.
The resistance of the pipe increases as the pipe diameter is reduced. A
hydraulic resistor can be created by a constriction in the bore of the pipe
(see Fig. 2.10). For example, a water tap is analogous to an adjustable
resistor.

2.2 Energy Sources

All circuits consume energy in order to work. In electronic circuits, energy
sources are either in the form of voltage sources or current sources.

2.2.1 Voltage source

An ideal voltage source can provide a defined voltage across its terminals re-
gardless of the amount of current drawn from it. This means that the ideal
voltage source is capable of providing infinite amount of energy (a single ideal
voltage source could have solved the world energy crisis if it had existed). En-
ergy sources of infinite capacity are not available in nature. The concept of ideal
source, however, is essential and instrumental in the analysis of circuits. It is



2.2. ENERGY SOURCES 20

not allowable to short-circuit a voltage source, since it creates a contradiction.
The DC voltage source symbol is shown in Fig. 2.1(a). The characteristics of
the DC voltage source in the form of an I − V plot are shown in Fig. 2.1(b),
where the voltage is constant at V1 independent of the current amplitude and
direction flowing through it. A voltage source may also have a time-dependent
voltage value. In that case, we use the symbol shown in Fig. 2.1(c).

(a) (b)

+

(c)

I

V

V1

V1

0

I

v(t)
+

i(t)

Figure 2.1: (a) Symbol of DC voltage source
of value V1, (b) I − V characteristics of a DC
voltage source of value V1, (c) symbol of AC
voltage source of value v(t).

The value of a DC volt-
age source can be measured
by a DC voltmeter. Com-
mon AC voltmeters can mea-
sure the voltage of an AC
voltage source correctly if the
voltage is sinusoidal. If the
voltage is not sinusoidal, an
oscilloscope should be uti-
lized, which shows the volt-
age waveform as a function of
time.

A voltage source is analo-
gous to a huge reservoir of wa-
ter at a certain height. This
reservoir provides a constant

pressure regardless of water drawn from it. As long as the water height is not
reduced, the pressure stays the same.

An alkaline battery sold in the supermarket is almost like a DC voltage source
with V1=1.5 V. Similarly, one cell of a nickel-cadmium (Ni-Cd) rechargeable
battery approximates a DC voltage source with a nominal voltage of 1.2 V.
Lithium-ion batteries commonly used in mobile phones are also rechargeable
batteries with a nominal voltage of 3.7 V. Lead-acid battery used in cars is
composed of 6-cells, each cell with a nominal voltage of 2 V. The voltage of a
battery drops, if a high current is drawn from it. So, none of these batteries is
an ideal voltage source.

2.2.2 Current source

(a) (b)

I

V
0

I1I1

+

-
V

+

-

(c)

v(t) i(t)

Figure 2.2: (a) Symbol for a DC current source
of value I1, (b) I − V characteristics of a DC
current source of value I1, (c) symbol for an AC
current source of value i(t).

An ideal current source can
provide a set current value
whatever the voltage across
its terminals may be. Simi-
lar to the voltage source, it
can provide infinite amount
of energy. Therefore, it is
only a mathematical repre-
sentation. While it is pos-
sible to short-circuit a cur-
rent source, it is not allowed
to be open-circuited since it
creates a contradiction. The
symbol for a current source is
depicted in Fig. 2.2(a). The
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5V 2A

+
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-

5V

2A

+

(b) (c)(a)

2V

+ +

(d) (e)

2A 1A
3A

8V
3 cos(ωt)

Figure 2.3: (a) Not allowed: a short-circuited voltage source, (b) not allowed:
two voltage sources with different values in parallel, (c) not allowed: an open-
circuited current source, (d) not allowed: two current sources with different
values in series (e) allowed: a current source in parallel with a voltage source.

I−V characteristic of the DC current source of value I1 is shown in Fig. 2.2(b).
It provides a current of I1 regardless of the amount or direction of the voltage
across it. Current sources with time varying current values are shown with the
same symbol as in Fig. 2.2(c).

A current source is equivalent to a constant flow pump. It provides the same
water flow rate regardless of the pressure necessary to do it.

A battery charger is almost like a DC current source. It provides the same
DC current during the charging period regardless of the voltage of the battery
being charged. A battery charger is not an ideal current source: It is allowable
to open-circuit a battery charger (no battery connected).

2.2.3 Prohibited circuits

Connection of ideal voltage and current sources in certain ways can create con-
tradictions. Those circuits are not allowed.

Fig. 2.3 shows a number of examples. Fig. 2.3(a) and (b) are prohibited cir-
cuits where a voltage source is short-circuited or two voltage sources of different
values are connected in parallel. Such circuits create a contradiction, and they
are prohibited. In Fig. 2.3(c), a current source is open-circuited. The current
source insists on pushing a 3 A current while the open-circuit does not allow
it. This is a contradiction. In (d), two current sources of different values are
connected in parallel. One would like to push 2 A, while the other insists on
1 A creating a contradiction. In (e), a 5 V voltage source is in parallel with a
2 A current source. The current in the loop is set by the current source at 2 A,
while the voltage across the current source is 5 V as determined by the voltage
source. There is no contradiction in this connection.

2.2.4 Power and Energy

The instantaneous power delivered by a source can be defined as

p(t) = v(t)i(t) (2.2)

with the directions of voltages and currents as shown in Figs. 2.1 and 2.2. If the
value of p(t) is positive, power is delivered by the source. On the other hand, if
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p(t) is negative, it means the power is absorbed by the source.
If the signals are periodic with period T , then we can define an average

power, P , delivered by a source as

P =
1

T

∫ T

0

v(t)i(t) dt (2.3)

Power is measured in units of watts (W), named after Scottish scientist James
Watt (1736–1819). For example, if a light bulb in a 3 V flashlight draws 100 mA,
the power delivered by the batteries is P = 3× 0.1 = 0.3 W.

Energy is the work done by an electrical source in given time duration. It is
defined as

E(T ) =

∫ T

0

p(t)dt (2.4)

Energy is measured in joules (J), named after English physicist James Prescott
Joule (1818–1889). For example, a 12 V car battery of 80 Ampere-hours capacity
stores an energy of E = 12 × 80 × 3600 = 3.4 × 106 = 3400 kJ, while a Ni-Cd
battery of 1.2 V with a 600 mAh capacity stores energy of E = 1.2×0.6×3600 =
2.6 kJ.

Suppose the voltage across an element, v(t), is given by a sinusoid at the
radial frequency of ω as

v(t) = V1 cos(ωt+ θv) (2.5)

and the current, i(t), through it is given similarly by

i(t) = I1 cos(ωt+ θi) (2.6)

where θv and θi are the phases of the voltage and current, respectively. We can
calculate the instantaneous power, p(t), delivered to it as

p(t) = v(t)i(t) = V1I1 cos(ωt+ θv)cos(ωt+ θi) (2.7)

or

p(t) =
V1I1
2

cos(θv − θi) +
V1I1
2

cos(2ωt+ θv + θi) (2.8)

In the case of a resistor, the current and voltage have the same phase (θv =
θi), and hence we can write the power delivered to a resistor as

p(t) =
V1I1
2

+
V1I1
2

cos(2ωt+ 2θv) (2.9)

We see that the phase difference between the voltage and the current in an
element or a branch of a circuit is critical and must be carefully controlled in
many aspects of electronics.

The average power, P , is the average value of p(t) in Eq. 2.8 integrated over
one cycle:

P =
1

T

∫ T

0

p(t)dt =
V1I1
2

cos(θv − θi) (2.10)

For a resistive load, the voltage and current phases are the same. Hence we
have θv = θi, and the average power is

P =
V1I1
2

(2.11)
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We note that if the element is such that the phase difference between the
voltage across and current through is θv − θi = 90o, P is zero. Inductors and
capacitors are such elements with no power dissipation.

2.2.5 Root-mean-square (rms)

Alternating current (AC) signals are usually specified in root-mean-square (rms)
quantities. A periodic voltage waveform, v(t), or a periodic current waveform,
i(t), with a period T have rms values of

Vrms =

√
1

T

∫ T

0

v2(t) dt and Irms =

√
1

T

∫ T

0

i2(t) dt (2.12)

If the voltage across and current through an electrical element are sinusoidal
with

v(t) = V1 cos

(
2π

T
t+ θv

)
and i(t) = I1 cos

(
2π

T
t+ θi

)
(2.13)

where V1 and I1 are the peak amplitudes, and T is the period. The rms value
of v(t), Vrms, is found after integration operation as

Vrms =

√
1

T

∫ T

0

v2(t) dt =

√
V 2
1

T

∫ T

0

cos2
(
2π

T
t+ θv

)
dt =

V1√
2

(2.14)

where T is the period o the sine wave. Similarly, rms value of a sine wave
current, i(t), is

Irms =

√
1

T

∫ T

0

i2(t) dt =

√
I21
T

∫ T

0

cos2
(
2π

T
t+ θi

)
dt =

I1√
2

(2.15)

The average power dissipated on that element is given by

P = VrmsIrms cos(θv − θi) (2.16)

We note that an AC voltmeter measures the rms (not the peak) value of the
voltage across its terminals, assuming that the voltage is sinusoidal. Similarly,
an AC ammeter measures the rms current flowing through it. Since the ratio of
the peak value and to the rms value is

√
2 for a sinusoidal signal, a 220 Vrms

sinusoidal line voltage has a peak value of 220
√
2=311 V. Using Eq. 2.16, we

deduce that a P=60 W light bulb operating at the line voltage of 220 Vrms

draws a current of 60/220 = 0.27 Arms, since θv = θi for the light bulb.

Example 1

The voltage across a 10 Ω resistor, vR(t), is triangular with a period T as shown
in Fig. 2.4. Find the average power, Pav, dissipated in the resistor.
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2

-2

vR(t)

T

T/2

T/4

Figure 2.4: Voltage waveform for Example 1.

Solution

Due to symmetry, the rms voltage, VRrms, of the resistor can be found by
integrating over only a quarter cycle (between 0 and T/4):

VRrms =

√
1

T

∫ T

0

vR(t)2(t) dt =

√
4

T

∫ T/4

0

(
2t

T/4

)2

dt =

√
4

T

64t3

3T 2

∣∣∣∣T/4

0

=
2√
3

(The rms value of a triangular waveform is 1/
√
3 times its peak value.) Hence

the average power dissipated in the resistor is

Pav =
V 2
Rrms

R
=

22

3

1

10
= 0.133 W.

2.2.6 Real-life sources

Real sources deviate from ideal sources in only one aspect. The voltage or cur-
rent supplied by a real source has a dependence on the amount of current drawn
from it. For example, a battery has an internal resistance. When connected to a
circuit, its terminal voltage decreases by an amount proportional to the current
drawn from it. This is depicted in Fig. 2.5(a). Although it is not recommended,
it is possible to short-circuit the terminals, since RS limits the current. When

(a) (b)

+

RS

RP +

VS

Is

V1

RS1

+

(c)

V2

RS2

RP1
I1

I2RP2

(d)

Figure 2.5: (a) Equivalent circuit of a real-life voltage source with a voltage
VS and an internal resistance of RS , (b) equivalent circuit of a real-life current
source with a current of IS and a parallel resistance of RP , (c) an allowed circuit:
two real voltage sources of different values in parallel, (d) an allowed circuit: two
real current sources of different values in series.

there is no current drawn from the battery, the voltage across the terminals is
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Vo. When a load resistance� is connected to this battery, the voltage across the
battery terminals is no longer Vo, since there is a voltage drop across RS .

A real-life current source is given in Fig. 2.5(b). It has a parallel resistance
of RP . It is possible to leave it open-circuited without causing a contradiction
because the current Io can go through the resistor RP .

Fig. 2.5(c) and (d) show allowed circuits since the connections do not create
a contradiction due to the presence of resistors.

2.2.7 Power line

Power line voltages differ from country to country, but there are only a few
standards. Line voltages are 120 Vrms or 220 Vrms, where all voltages are
specified in rms (The definition of rms voltage is given in Eq. 2.26). The power
line in most of Europe is 50 Hz/220 Vrms, while it is 60 Hz/120 Vrms in America.

Electrical energy is generated in electric power plants. The generated power
must be transported long distances before it can be used since power plants
can be quite far away to areas where large energy demand is. The voltage
level is either 6.3 kVrms (=6300 Vrms) or 13.8 kVrms at the terminals of the
generator in the plant. In order to carry the power over long distances with
minimum energy loss, the voltage of the line is stepped up to a very high level,
usually 154 kVrms or 380 kVrms. The transport is always done by means of
high voltage (HV) overhead lines (OHL). This voltage level is stepped down to
a lower level of 34.5 kVrms medium voltage (MV), in the vicinity of the area
(may be a town, village, etc.) where the energy is to be consumed. Energy is
distributed at this potential level (may be up to few tens of km). It is further
stepped down to household voltage level (e.g., 220 V — the voltage referred to
as 220 Vrms actually means a voltage level between 207 to 244 Vrms) in the
close vicinity of the consumer. All this step-up and step-down is done by using
power transformers.

We are accustomed to seeing the electric energy coming out of the household
systems as a supply of single-phase voltage on a pair of lines: live and neutral.
When energy is generated at the generator, it always comes out in three phases.
If the phase voltage that we observe between the live and neutral is

v1(t) = Vp sin(ωt) (2.17)

then, it is always accompanied by two other related components

v2(t) = Vp sin(ωt+ 120o)

v3(t) = Vp sin(ωt+ 240o) (2.18)

This is necessitated by the economics of the technology employed in electrome-
chanical power conversion. A three-phase system is more economical than an
equivalent single-phase system because it uses less conductor material to trans-
port the same power. The three-phase system was invented by Nikola Tesla, a
Serbian American scientist (1856–1943), eliminating the DC system then pro-
moted by Thomas Edison (1847–1931) as a result of War of Currents. These
three phases of line supply are distributed to the consumers such that all three
phases are evenly loaded as much as possible.

�A load resistance could be the resistance of an element that performs a useful function,
such as a flash light bulb, a heater or a cooling fan.
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As far as phase voltage is concerned, 220 Vrms refers to the voltage difference
between any one of the phase voltages and neutral. On the other hand, the
potential difference between any two phases, which is called line-to-line voltage,
e.g., between v1(t) and v2(t), is

∆v(t) = v1(t)− v2(2) =
√
3Vp sin(ωt− 30o) (2.19)

The potential difference between the phases is, therefore,
√
3=1.73 times larger

than any one of phase voltages with respect to neutral. The line-to-line voltage
level is 381 Vrms for a phase voltage of 220 Vrms. The last step-down from MV
to low voltage (LV) is depicted in Fig. 2.6. Note that there is no neutral for

Figure 2.6: A 3-phase MV to LV transformer

3-phase MV distribution lines (both HV and MV energy are carried as three
phases only without neutral reference during the transportation). Once it is
stepped down, one terminal of each of the secondary windings is grounded at
the transformer site, and that node is distributed as neutral. Grounding is done
by connecting that terminal to a large conducting plate or long conducting rods
buried in the earth. A separate line connected to the earth is also distributed
since most household and professional equipment require a separate earth con-
nection for safety. Neutral is the return path of the current we draw from the
line. Chassis of household equipment or electrical devices are connected to the
earth line. We do not expect any significant current on the earth connection. If
there is a significant current, there may be a leakage problem in the electrical
system or the equipment.
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When the energy is carried on three phases only, the nominal rms line volt-
ages refer to the potential between the phases. 34.5 kVrms, for example, is the
line voltage in MV lines.

A typical MV to LV transformer configuration is given in Fig. 2.6. The three-
phase line-to-line voltage of 34.5 kV MV is connected to the primary windings
of a three-phase transformer, which is connected in a ∆ configuration. The
secondary terminals are LV terminals, and three windings are now configured
in a Y form. In other words, one terminal of each of the secondary windings
is connected to the earth, while there is no earth connection on the primary.
The voltage transformation ratio in these transformers is always stated as the
ratio of line-to-line voltages (i.e., the potential difference between the phases) of
primary and secondary windings. However, the physical turns ratio of primary
and secondary windings correspond to 34.5 kV to 220 V.

Three 220 V live lines, neutral and earth are distributed in the buildings
through a few distribution panels. Precautions against excessive current are
taken at each panel. This reduces the fire risk in the building and is not helpful
to avoid electric shock. One can get electric shock either by touching both live
and neutral simultaneously, or by touching live while having contact with the
ground.

Building floors have a connection to a ground reference, although there may
be some resistance in between. Therefore if one touches the line while standing
on the floor, e.g., with shoes with natural soles (not an isolating sole like rubber),
he/she gets a shock. It is likely that there is an extra precaution at the last
panel, where a residual current device (RCD) is fitted. This device monitors the
difference between the line and neutral currents, and when it exceeds 30 mA, it
breaks the circuit. This decreases the severity of the shock.

2.3 Kirchhoff’s Circuit Laws

2.3.1 Kirchhoff’s Voltage Law (KVL)

Kirchhoff’s Voltage Law (KVL) states that algebraic sum of voltages
around any loop should be zero. If Vn’s represent the voltages in a loop
with N voltages, we have

N∑
n=1

Vn = 0 (2.20)

We note that the individual Vn’s could be positive or negative depending
on the directions. This law is a direct result of conservation of energy.

This law is named after German physicist Gustav Robert Kirchhoff (1824–1887).

Fig. 2.7 shows two example circuits. The reference directions for voltages are
assigned arbitrarily by the positions of the + signs. We note that the individual
voltages can be positive or negative depending on the direction assignment. For
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the first circuit in (a), from KVL we can write

N∑
n=1

Vn = −VV − VR + VI = 0

While going clockwise around the loop, we use a plus sign in KVL equa-
tion if the first-encountered sign of a component voltage is plus, a negative
sign otherwise.

Using the same convention for the second circuit in (b), the KVL equations
for the three loops are:

−VS + V1 + V2 − V3 = 0

−VS + V1 − V4 + V5 − V3 = 0

−V2 − V4 + V5 = 0

We do not have three independent equations. The third equation can be ob-
tained by subtracting the first one from the second.

2.3.2 Kirchhoff’s Current Law (KCL)

From the conservation of charge, Kirchhoff’s current law states that the
sum of currents flowing into any node (A node is a point in the circuit
where more than two elements are connected together) should be equal to
the sum of currents leaving that node. For a node with N branches, it can
be written as

N∑
n=1

In = 0 (2.21)

where the branch currents flowing into the node have a negative sign, and
the branch currents leaving the node have a positive sign.

Fig. 2.8 shows two example circuits.� In the first circuit of (a), we choose
directions for currents arbitrarily. I2 can be found from Ohm’s Law as I2=

�To simplify the notation, we use 1000 Ω=1KiloΩ=1K and 1,000,000 Ω=1MegaΩ=1 M.

R

+- VR +

-

+

VV VI
-

(a) (b)

+
+

+

+
+

+

VS

V1

V2

V3

V4

V5

Figure 2.7: (a) An example circuit with three components and one loop, (b) an
example circuit with six components and three loops
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=5 V/1 kΩ=5 mA. KCL at node A can be written as

N∑
n=1

In = −I1 + I2 + I3 = −I1 + 5 mA+ 3 mA = 0

Hence, we find I1=8 mA.
In the second circuit of Fig. 2.8(b), we see that the current sources determine

the currents I1 = 5µA (micro, µ = 10−6) and I4 = 2µA (1.5 V voltage source
and 2 MΩ resistor do not have any influence). Moreover, from Ohm’s law, we
determine I2=6 V/1M=6 µA. From the KCL at node B, we write

N∑
n=1

In = I1 + I2 + I3 − I4 = 5µA+ 6µA+ I3 − 2µA = 0

Hence, we find I3 = −9µA. Since it is a negative quantity, the actual current
direction for I3 is upwards.

2.4 Resistors and Ohm’s Law

The relation between the voltage across a resistor, V , and its current, I, is
governed by Ohm’s law (see Fig. 2.9):

V = RI (2.22)

where R is the resistance of the resistor. In a given resistor, more current flows,
if more voltage is applied.

In the water flow analogy illustrated in Fig. 2.10(a), more water will flow
through a pipe if the pressure across the pipe increases. A variable resistor is
analogous to a water tap (Fig. 2.10(b)).

Example 2

Let us determine the resistance of a 1 mm diameter copper wire of 100 m length.
Using Eq. 2.1 and Table 2.1 we write

R =
ρl

A
=

(1.68 · 10−8 Ω-m)(100 m)

π(0.5 · 10−3)2 m2
= 2.14 Ω (2.23)

5V 1K 3mA

A

+

I1

I2

(b)(a)

+
1.5V

+

I1

I2

BI3

I3

I4

6V

5µΑ
1M

2µΑ

2M

Figure 2.8: (a) An example circuit with three components, (b) an example
circuit with six components
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R

I
+

-
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I

V

slope=1/R

0

Figure 2.9: Voltage V across a resistor R results in a current of I through it.

pipe

(a) (b)

tap

water water

Figure 2.10: (a) Resistor analogy: a water pipe with a constriction, (b) Variable
resistor analogy: a water tap

2.4.1 Power dissipation in resistors

Resistors dissipate energy. Energy dissipation means that all the electrical en-
ergy applied to them gets converted into heat energy. As we increase the power
delivered to a resistor, it warms up. The instantaneous power consumed (or
dissipated) on a resistor can be found from

p(t) = v(t) i(t) =
v2(t)

R
= i2(t)R (2.24)

If the applied signals are periodic, the average power, P , can be found using an
average over a period T :

P =
1

T

∫ T

0

v(t)i(t)dt =
1

R

1

T

∫ T

0

v2(t)dt = R
1

T

∫ T

0

i2(t)dt (2.25)

From Eq. 2.12, we have

V 2
rms =

1

T

∫ T

0

v2(t)dt and I2rms =
1

T

∫ T

0

i2(t)dt (2.26)

and hence we can simplify the expressions in Eq. 2.25. The average power
dissipated on R is

P =
V 2
rms

R
= I2rmsR (2.27)

in unit of watts.
Real-life resistors have power dissipation limit. If this limit is exceeded, a

resistor may get destroyed.
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Example 3

Consider the circuit of Fig. 2.11. Find the power delivered/dissipated by the
sources and the resistor. Check that the total power delivered is equal to total
power dissipated. Note that the reference directions for resistor and for sources
are different.

+

12V2A

VRI

50Ω

IV

IR

Figure 2.11: Circuit for Example 3

Solution

The voltage across the resistor is determined by the voltage source. The current
through the resistor is IR = V/R = 12/50 = 0.24 A. Hence the power dissipation
in the resistor is

PR = V IR =
12

0.24
= 2.88 W

The voltage across the current source is also determined by the voltage source.
The power delivered by the current source is

PI = V I = 12× 2 = 24 W

The current through the voltage source is determined by KCL: IV = IR − I =
0.24− 2 = −1.76 A. The power delivered by the voltage source is

PV = V IV = 12× (−1.76) = −21.12 W

Since PV is negative, the power is not delivered but rather absorbed by the
voltage source. The total power delivered is equal to the total power dissipated:

PI + PV = 24− 21.12 = 2.88 = PR

The power delivered by the current source is partly dissipated in the resistor
and the remaining part is absorbed by the voltage source.

2.4.2 Resistor color codes

The resistors that we use in electronics are made of various materials: Carbon
composition, metal film, metal oxide, etc. Most abundant are carbon resistors.
Most resistors have a color code around them to indicate resistance values. The
resistance is expressed in terms of a sequence of colored bands on the resistor
body. The color codes are given in Table 2.2. Resistors with 5% and 10%
tolerance have 4-band color codes. Hence, a 100 Ω resistor with 10% tolerance
is marked as brown-black-brown-silver, and a 4.7 kΩ resistor with 5% tolerance
is marked as yellow-violet-red-gold.

The resistors with 10% tolerance are available in standard values with the ra-
tio of consecutive values about 1.2. The two significant figures (see Appendix B
for an explanation of significant figures) of standard resistor values are:
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Exponent1. significant
figure

2. significant
figure Tolerance

Color Significant figure Multiplier Tolerance

Black 0 ×100

Brown 1 ×101 ± 1%
Red 2 ×102 ± 2%
Orange 3 ×103

Yellow 4 ×104

Green 5 ×105 ± 0.5%
Blue 6 ×106

Violet 7 ×107

Gray 8 ×108

White 9 ×109

Gold ×10−1 ± 5%
Silver ×10−2 ± 10%

Table 2.2: Resistor color codes. The resistor shown above has a 4-band code:
15 kΩ with 10% tolerance.

10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68, and 82.

On the other hand, the resistors with 5% tolerance can be found in the following
values:

10, 11, 12, 13, 15, 16, 18, 20, 22, 24, 27, 30, 33, 36, 39, 43, 47, 51, 56, 62, 68,
75, 82 and 91.

♦ TRC-11 uses 34 resistors with 10% tolerance in the range 10 Ω to 1 MΩ
all with a power dissipation limit of 0.25 W.

Average power dissipation limits of resistors are specified by the manufac-
turer. Typically, the size of the resistors determines the power limit. Fig. 2.12
shows leaded resistors of different power ratings. Most commonly used leaded
resistors found in the lab can dissipate an average power up to 1/4 W. For ex-
ample, a 100 Ω resistor with a 1/4 W limit can handle a maximum DC voltage
of 5 V.

Resistors with 0.5%, 1%, or 2% tolerance with three significant figures are
also available, albeit at a higher cost. Such resistors have 5-band color codes,
where the first three bands show the three significant figures.

Modern electronic circuits use surface-mount-devices (SMD). These smaller
components do not have leads and have a smaller power rating.

Variable resistors are also used frequently. They are typically built by a slid-
ing contact on a carbon film. High power variable resistors are called rheostats,



2.4. RESISTORS AND OHM’S LAW 33

Figure 2.12: Leaded resistors with 1/4W, 1W, and 11W power ratings.

built by a sliding wiper on a resistance wire. A potentiometer or pot for short
is a three-terminal resistor with the sliding contact being the third terminal.
Trimpots are smaller potentiometers to be mounted on printed circuit boards
(PCB). They are meant to be used for only a few adjustments over their lifetime
(see Fig. 2.13).

Figure 2.13: The symbol of a potentiometer (top left), of a trimpot (top right).
Photos of a potentiometer (bottom left) and trimpots of different types. Multi-
turn trimpots have high degrees of accuracy (second from the bottom right).

♦ TRC-11 has one potentiometer for volume control.

2.4.3 Series connected resistors

Consider two resistors connected in series as shown in Fig. 2.14(a). From KCL,
the current through the resistors is the same. From KVL the total voltage across
the two resistors, V , is equal to the sum of voltages across each resistor:

V = V1 + V2 = R1I +R2I = (R1 +R2)I (2.28)

V1 V2
+ +

IR1 R2

- -

V+ -
V1 V2

+ +

IR1 R2

- -

V+ -

(a)

Rn

Vn

...
+ -

(b)

Figure 2.14: (a) Two series-connected resistors, (b) n series-connected resistors
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+

I

R1

R2

-V

I1

I2

+

I

R1

R2

-V

I1

I2

......

RnIn

(a) (b)

Figure 2.15: (a) Two parallel-connected resistors, (b) n parallel-connected re-
sistors

where we used Ohm’s law for each resistor. Therefore, in a series connection of
two resistors, the total resistance is equal to the sum of the resistances:

R = R1 +R2 (2.29)

Series connected resistors are used frequently as a voltage divider. The voltage,
V1, across R1 can be written in terms of V as

V1 =
R1

R1 +R2
V (2.30)

If there are n resistors in series as in Fig. 2.14(b), the voltage across the resistor
R1 can be found from

V1 =
R1

R1 +R2 + . . .+Rn
V (2.31)

Since the voltage dividers are very common, it is worth learning the formula
above.

When n resistors are connected in series, the total resistance can be found
easily:

R = R1 +R2 + · · ·+Rn (2.32)

2.4.4 Parallel connected resistors

When two resistors are connected in parallel as shown in Fig. 2.15(a), the volt-
age, V , across every one of them is the same, but each one has a different current
passing through it. Using KCL and Ohm’s law, we write

I = I1 + I2 =
V

R1
+

V

R2
= (

1

R1
+

1

R2
)V (2.33)

For a parallel connection of two resistors, the total resistance is given by

R = R1 ∥ R2 =

(
1

R1
+

1

R2

)−1

=
R1R2

R1 +R2
(2.34)
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Two parallel-connected resistors are often used as a current divider. The
current I1 in resistor R1 can be written in terms of the total current I as

I1 =
R2

R1 +R2
I (2.35)

Note that unlike Eq. 2.30, the resistance in the numerator refers to the resistor
in the other branch.

When n resistors are connected in parallel as shown in Fig. 2.15(b), the total
resistance can be found from

R = R1 ∥ R2 ∥ · · · ∥ Rn =

(
1

R1
+

1

R2
+ · · ·+ 1

Rn

)−1

(2.36)

For n resistors in parallel, the current divider formula becomes

I1 =
R2 ∥ R3 ∥ . . . ∥ Rn

R1 + (R2 ∥ R3 ∥ . . . ∥ Rn)
I (2.37)

where the numerator contains the parallel combination of all resistors in the
other branches.

2.4.5 Resistive circuits

Electrical circuits can have resistors connected in all possible configurations.
Consider, for example, the circuit given in Fig. 2.16(a). Two resistors are con-
nected in series, which are then connected in parallel to a third resistor. The

R1

R2

R3

(a)

R4

R5 R6

(b)

RT1 RT2

c d

Figure 2.16: Examples of resistive circuits

equivalent resistor, RT1, can be found as the parallel combination of R1 with
R2 +R3 using Eq. 2.29 and 2.34:

RT1 = R1 ∥ (R2 +R3) =
R1(R2 +R3)

R1 +R2 +R3

In Fig. 2.16(b), two resistors are first connected in parallel, then connected in
series with another resistor. The equivalent resistor RT2 can be found similarly
as

RT2 = R4 + (R5 ∥ R6) = R4 +
R5R6

R5 +R6
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2.5 Analysis of electrical circuits: Nodal analy-
sis

The knowledge of the value of current through each branch or the voltage across
each element is often required. The circuits are analyzed to find these quantities.
There are two methods of analysis§. The first one is the nodal analysis or node-
voltage method. A node is a point in the circuit where more than two elements are
connected together. For example, d in Fig.2.16(b) is a node, but c in Fig. 2.16(a)
is not.

We follow a procedure outlined below to carry out the nodal analysis:

1. Select a common node with the most possible branches so that all
other node voltages are defined with respect to this node. Call this
node the ground node.

2. Define the voltage difference between all other nodes and the ground
node as the unknown node voltages.

3. Write down the KCL at each node, expressing the branch currents
in terms of node voltages and sources. (Not to get confused, write
the branch currents always as leaving the node except when there are
current sources.) If there is a voltage source between two nodes, write
down the KVL between those two nodes.

4. Solve the equations obtained in step 3 simultaneously.

5. Find all branch currents and voltages in terms of node voltages.

Example 4

Consider the circuit in Fig. 2.17. Let us analyze this circuit to find all element

R1

R2

R3I1

VA

A

VB

Figure 2.17: Example 4 for nodal analysis

voltages and currents using nodal analysis procedure:

1. Assign the ground symbol to the bottom node.

§The other method of circuit analysis is called mesh analysis. In this method, first, the
currents around the loops in the circuit are defined as mesh currents. Then KVL is written
down for each mesh in terms of mesh currents. The two methods are mathematically equivalent
to each other. Both of them yield the same result. Mesh analysis is more suitable for circuits,
which contain many series connections. Nodal analysis, on the other hand, yields algebraically
simpler equations in most electronic circuits. So, mesh analysis is not recommended.
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2. We have a single node, VA, in this example. Define the node voltage VA

as the voltage difference between node A and the ground node. VB is not
a node since only two branches join.

3. Write KCL at node A (currents flowing in=currents flowing out) while
writing the currents in terms of the node voltage VA:

Current through R1 (flowing out) + Current through R2 + R3 (flowing
out)-Current source current (flowing into the node) =0

VA

R1
+

VA

R2 +R3
− I1 = 0

4. Solve for VA in terms of the source current and resistors:

VA =
R1(R2 +R3)

R1 +R2 +R3
I1

5. Determine the branch currents in terms of VA. The current flowing out
through R1 is VA/R1. The current flowing out through R2 and R3 is
VA/(R2 + R3). The voltage across R3 can be found from the voltage
divider relation of Eq. 2.30:

VB = VA
R3

R2 +R3
=

R1R3

R1 +R2 +R3
I1

Hence, all currents and voltages in the circuit are determined.
As an alternate method, we can use the current divider equation of Eq. 2.35

to find the current in the resistor R1 and multiply it with R1 to find the voltage
VA:

VA =

(
R2 +R3

R1 +R2 +R3
I1

)
R1 =

R1(R2 +R3)

R1 +R2 +R3
I1

To find the voltage VB , we first find the current flowing in R2 and R3 using the
current divider equation and multiply with R3.

VB =

(
R1

R1 +R2 +R3
I1

)
R3 =

R1R3

R1 +R2 +R3
I1

Example 5

Consider the circuit of Fig. 2.18 containing three sources and five resistors. We
apply the nodal analysis procedure:

1. Assign the ground symbol to the bottom node.

2. We have three nodes in this example. We assign Va, Vb, and Vc as node
voltages.

3. We note that Va is already known as Va = 8V. Therefore, we need to write
only two equations. Write KCL at nodes b and c as

Vb − 8

3K
+

Vb

5K
+

Vb − Vc

1K
− 6 mA = 0

Vc − 8

2K
+

Vc

4K
+

Vc − Vb

1K
+ 10 mA = 0

We note that (V, kΩ, and mA) is a consistent unit set.
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+

2K

3K

5K

1K

4K6m 10m8V

Va Vb Vc

Figure 2.18: Example 5 for nodal analysis

4. Solve the two equations simultaneously to find Vb=550/101=5.4 V and
Vc = −32/101=0.32 V. Note that it does not make sense to provide more
than two or three digits of accuracy as answers when the accuracy of
resistors is only 5 or 10%. Refer to Appendix at page 309 on significant
figures.

5. Any branch current can be easily found since the node voltages are de-
termined. For example, the current in the 1K resistor from left to right
is

Vb − Vc

1K
=

582

101
= 5.8 mA

Example 6

Vy Vz

Vx

+

10V

1.2M2.2M

0.82M

3.3M

1M

5µΑ

Figure 2.19: Example 6 for nodal analysis

1. Assign the ground symbol to the bottom node.

2. We assign Vx, Vy, and Vz as node voltages.

3. Vx is already known as Vx = 10V. We need to write only two equations.
Write KCL at node y and z as

Vy − 10

2.2M
+

Vy − Vz

3.3M
+

Vy

0.82M
= 0

Vz − 10

1.2M
+

Vz − Vy

3.3M
+

Vz

1M
+ 5µA = 0

We note that (V, MΩ, and µA) is also a consistent unit set.
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4. Solve the two equations simultaneously to find Vy=2.6 V and Vz=1.9 V.

5. Since the node voltages are known, any branch current can be easily found.
For example, the current in the 3.3 M resistor from left to right is

Vy − Vz

3.3M
= 0.20 µA

Note that we cannot use the current divider or voltage divider equation to solve
this circuit.

2.6 Capacitors

Capacitors are built from two conductor plates separated by a thin insulator, as
shown in Fig. 2.20. When a voltage of V is applied across the plates, electrical
charges +Q and −Q accumulates at the plates. The charges remain there even
after the voltage is removed. Hence they act like charge storage devices. In this
respect, they resemble voltage sources. However, they cannot supply constant
voltage for a long time since they have a finite reservoir of charge. The ratio

+Q

-Q

+

-
V

Conductor plates
of area Ad

+ + + + ++ + + +

- - - ------

Figure 2.20: Structure of a capacitor built with two conducting plates separated
by an insulator.

of the charge, Q, stored in a capacitor to the voltage, V , applied across it is
constant

C =
Q

V
(2.38)

where C is the capacitance of the capacitor, and is measured in farads (F),
named after English physicist Michael Faraday (1791–1867). Hence, the charge
stored in a capacitance is proportional to the voltage across it (in contrast to a
resistor, where the current is proportional to the voltage across it).

The capacitance of a capacitor built from two parallel conducting plates of
area A and separated by a distance d is given by

C =
ϵoϵrA

d
(2.39)

where ϵo = 8.85×10−12 F/m is the permittivity of free space and ϵr is a unitless
quantity showing the relative permittivity of the insulator used between the
plates. Table 2.6 lists the relative permittivities of some materials. The symbols
of non-polarized, polarized, and variable capacitors are depicted in Fig. 2.21.
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Material ϵr, relative permittivity

Air 1.00
Teflon 2.1
Mylar 3.1
Paper 3.85
Pyrex glass 4.7
Silicon 11.7
Barium strontium titanate 500

Table 2.3: Relative permittivity of some materials at 20◦C .

Example 7

Find the capacitance of a capacitor built by a paper dielectric with conductor
planes of 3 cm×10 cm. The paper has a thickness of 0.1 mm.

C =
ϵoϵrA

d
=

(8.85× 10−12)(3.85)(0.03× 0.1)

0.1× 10−3
= 1020 pF. (2.40)

+

(a) (b)

+

-
v(t)

i(t) i(t)

v(t)
+

-

(c)

Figure 2.21: Symbols for capacitors: (a) Non-polarized, (b) polarized (c) vari-
able

water

Rubber
diaphragm

Figure 2.22: Capacitor analogy: Water tank with a rubber diaphragm.

In the water-flow analogy, the capacitor is analogous to a water tank with
an elastic rubber diaphragm in the middle (see Fig. 2.22). When water is forced
into the tank from one side, the diaphragm stretches and the pressure increases
(analogous to increased voltage). As pressure is increased, it is possible to feed
more water in the tank (analogous to increased charge). A larger capacitor is
analogous to a tank with a larger cross-section, hence a larger capacity. It needs
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C

10nF
1mA

+

-
v(t)

C+

1µF

i(t)

3sin(ωt)

(b)(a)
ω=2π104

I= v(t)=

v(0)=2

Figure 2.23: (a) A current source driving a capacitor, (b) an AC voltage source
across a capacitor.

more water to increase the pressure. On the other hand, if the diaphragm is
made stiffer, the capacitance of the tank is reduced.

If we let a current, i(t), of arbitrary time waveform, pass through a capacitor,
the amount of charge accumulated on the capacitor within a time interval, 0 to
t1, is given as

∆Q =

∫ t1

t=0

i(t)dt (2.41)

If i(t) is a DC current, IDC , then the charge accumulated on the capacitor is
simply ∆Q = IDCt1. For example, a DC current of 1 mA accumulates a charge
of 1nC (nano=10−9) on a capacitor in 1 µs. This charge generates 100 mV
across the capacitor of 10 nF. More generally, this relation is expressed as

Q(t) = Q(0) +

∫ t

ξ=0

i(ξ)dξ (2.42)

where ξ is the dummy variable of integration. Q(0) refers to the initial charge
on the capacitor at the time instant t = 0. Using Eq. 2.38, we can relate the
voltage across a capacitor and the current through it

v(t) = v(0) +
1

C

∫ t

ξ=0

i(ξ)dξ (2.43)

where v(0) = Q(0)/C is the voltage of the capacitor at t=0. If we differentiate
both sides of this equation with respect to t, the constant term, v(0), disappears
and we obtain

d

dt
v(t) =

1

C
i(t) or i(t) = C

d

dt
v(t) (2.44)

Hence, the current through a capacitor is proportional to the time derivative of
the voltage applied across it.

Example 8

Referring to Fig. 2.23(a) and using Eq. 2.43, the voltage of the capacitor driven
by the current source is given by

v(t) = v(0) +
1

C
It = 2 +

1

10× 10−9
10−3t = 2 + 105t (2.45)
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Figure 2.24: Leaded capacitors (left-to-right): A tantalum capacitor, 47 µF,
20 V; electrolytic capacitors 1 µF, 50 V; 47 µF, 63 V; 10 µF, 400 V; and 220 µF,
200 V

Figure 2.25: Variable capacitors of different types.

The current in the capacitor of Fig. 2.23(b) can be found using Eq. 2.44:

i(t) = C
d

dt
(3 sin(ωt)) = 3(1 · 10−6)(2π104) cos(ωt) = 0.19 cos(ωt) (2.46)

There are two major types of capacitors. The first type is non-polar, i.e., the
voltage can both be positive and negative. Most of the capacitors of smaller than
0.5 µF (µ=micro=10−6)¶ are of this type. However, as the capacitance values
become large, it is less costly to use capacitors, which have polarity preferences,
like electrolytic or tantalum capacitors. Fig. 2.24 is a photo of leaded tantalum
and electrolytic capacitors with different voltage ratings. For these capacitors
the voltage must always remain in the same polarity indicated on the capacitor.

Capacitors are typically available in the range 1 pF (pico=10−12) to 10 mF
(milli=10−3) range. Capacitors also have voltage ratings. The voltage across it
should be kept below the maximum voltage rating. The capacitors with 10%
tolerance are available in the following standard values:

10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68 and 82.

For values less than 1 nF, variable capacitors are also available (see Fig. 2.25).

Fig. 2.26 depicts surface-mount ceramic, electrolytic and variable capacitors
of different values.

¶For other unit prefixes refer to Appendix B on page 310
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Figure 2.26: Surface-mount capacitors (left-to-right): 0402 package, 0804 pack-
age, 1206 package, variable

+ -
+ - + -

V

V1 V2

Q Q

Q1

Q2

C1 C2

C1

C2

(a) (b)

V+ -

Figure 2.27: Two capacitors (a) in parallel, (b) in series

♦ TRC-11 has 29 unpolarized (10 pF to 220 nF), and nine polarized (1 µF
to 220 µF).

2.6.1 Capacitors in parallel

When two capacitors are connected in parallel, as shown in Fig. 2.27(a), they
have the same voltage, V , across them. If Q1 and Q2 are the charges accumu-
lated on these two capacitors, then the total charge is the sum of these charges.
Using Eq. 2.38 we find

Q = Q1 +Q2 = C1V + C2V = (C1 + C2)V (2.47)

When capacitors are connected in parallel, the total capacitance, C, is given by

C = C1 + C2 (2.48)

In the water tank analogy, obviously, the tank capacities are added when
two tanks are connected in parallel as shown in Fig. 2.28(a).

2.6.2 Capacitors in series

When two capacitors are connected in series, as shown in Fig. 2.27(b), they have
to have the same charge, Q, stored in them. Otherwise, charge neutrality is not
satisfied. From Eq. 2.38, this charge corresponds to voltages V1 = Q/C1 and
V2 = Q/C2. Hence, the total voltage is

V = V1 + V2 =
Q

C1
+

Q

C2
= Q

(
1

C1
+

1

C2

)
(2.49)
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(a) (b)

water

water water

water

Figure 2.28: Water tanks with the diaphragms (a) in parallel, (b) in series

When two capacitors are connected in series, the total capacitance, C, is

C =

(
1

C1
+

1

C2

)−1

or C =
C1C2

C1 + C2
(2.50)

We note that the total capacitance is less than either one of them.
Series connected capacitors are frequently used as an AC voltage divider.

Since capacitors do not consume power, such dividers are preferable to resistive
voltage dividers of p. 34. Referring to Fig. 2.27(b) the voltage across C1 can be
written as

V1 =
C2

C1 + C2
V (2.51)

Note the difference between this equation and Eq. 2.30.
In the water-flow analogy, the series connection (see Fig. 2.28(b)) of two

tanks causes tank capacity to drop since both diaphragms need to be pushed
(equivalent to a stiffer diaphragm) to get water into the first tank.

2.6.3 Energy stored in a capacitor

Unlike resistors, the capacitors do not dissipate energy. They can only store
energy. The energy, E, stored in a capacitor can be written as

E =
1

2
CV 2 (2.52)

For example, a 1000µF capacitor with a voltage of 24 V stores energy of 0.29 J.

2.7 RC Circuits

When a resistor, R, is connected to a charged capacitor, C, in parallel, as
in Fig. 2.29(a), the circuit voltages become a function of time. Assume that
initially capacitor is charged to V0 volts (it has Q = CV0 coulombs stored
charge). At t=0 we connect the resistor, R. Using KCL and Ohm’s law, we
write�

i(t) = C
dv(t)

dt
= −v(t)

R
(2.53)

�Since the current i(t) is leaving the resistor in the opposite direction to the voltage v(t),
we must use a negative sign for v(t)/R.
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Figure 2.29: (a) RC circuit, (b) voltage as a function of time

or
dv(t)

dt
+

v(t)

RC
= 0 (2.54)

This equation is called a first-order differential equation. Its solution for
t ≥ 0 is

v(t) = V0e
−t/RC for t ≥ 0. (2.55)

v(t) is plotted in Fig. 2.29(b). The above expression tells us that as soon as the
resistor is connected, the capacitor voltage starts decreasing, i.e., it discharges
on R. The speed with which discharge occurs is determined by τ = RC. τ is
called time constant and has units of time (1Ω× 1F=1sec). The current flowing
in the capacitor is

i(t) = C
dv(t)

dt
= C

d

dt
V0e

−t/RC = −V0

R
e−t/RC for t ≥ 0. (2.56)

The value of the current is found negative, indicating that the current flows
in the direction opposite to the one shown in the figure.

The voltage of a capacitor is always a continuous function of time
(A sudden jump in capacitor voltage is not possible. Possible only mathe-
matically, when an impulse current of infinite amplitude and infinitesimally
short duration is applied.) On the other hand, the current of a capacitor
can be a discontinuous function of time.

Note that we used a sign convention while writing Eq. 2.53: The sign of the
voltage on an element must be chosen positive if the positive terminal is the one
where the current enters the element. In this circuit, the current is chosen in
the direction entering to C at its positive terminal (top) (as in Fig. 2.21), thus
the sign of the capacitance equation of Eq. 2.53 must be positive. On the other
hand, the current leaves the positive terminal for the resistor (unlike the current
in Fig. 2.9); hence we must use a negative sign for Ohm’s law.

Usually, we do not know the actual current directions and voltage polarities
when we start the analysis of a circuit. We assign directions and/or polarities
arbitrarily and start the analysis. We must carefully stick to the above con-
vention when writing down the equations of the elements or KVL and KCL
equations. Otherwise, our results are not correct.

The magnitude of the current in the above circuit is at its maximum, V0/R,
initially, and decreases towards zero as time passes. This is expected as the
voltage across the capacitor similarly decreases.
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Water flow analogy of RC circuit

Consider the water flow analogy of RC circuit shown in Fig. 2.30. In the be-

hydraulic resistance

hydraulic capacitance

Figure 2.30: Water flow analogy of RC circuit: water tank feeding a hydraulic
resistor

ginning, the diaphragm is highly stretched, and the pressure is the greatest.
At that time, the water flow will be the fastest. As the water flows, the di-
aphragm relaxes and the pressure reduces. The flow rate approaches zero when
the diaphragm relaxes fully. The energy stored in the stretched diaphragm is
dissipated in the hydraulic resistor.

2.8 Analysis of first-order RC circuits

RC circuits containing just one capacitor are called first-order circuits. The
problem can be expressed as a first-order differential equation as in Eq. 2.54 of
the previous section. The solution of this differential equation for any voltage
or current variable in the circuit is always an exponential of the form given in
Eq. 2.55 or 2.56. Because of its simplicity, the solution for any voltage or current
can be written without writing the differential equation. For the solution of a
first-order RC circuit, we can use the following procedure:

1. Kill the sources: Place a short-circuit for the voltage sources, and
remove (or open-circuit) the current sources. Find the equivalent
resistance, Req, across the capacitor.

2. Write the time constant as τ = ReqC

3. Using KVL, KCL or nodal analysis, find the initial value, vi or ii
(voltage or current), of the desired quantity, by substituting a voltage
source with a value equal to the initial voltage of the capacitor.

4. Using nodal analysis, find the final value, vf or if , of the desired
quantity by substituting an open circuit for the capacitor.
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5. Write the solution for the desired voltage or current variable as

v(t) = vf + (vi − vf )e
−t/τ or i(t) = if + (ii − if )e

−t/τ (2.57)

Note that when we substitute t=0, we get v(0) = vi and i(0) = ii, consistent
with step 3. Likewise, as t → ∞, v(t) approaches to vf , and i(t) approaches to
if , consistent with step 4.

If a circuit contains two or more independent capacitors, the circuit is no
longer a first-order circuit. Obtaining the time-domain solution of such circuits
is more difficult, and we do not deal with such circuits. A circuit simulator can
be used for that purpose. See page 300 for a tutorial on time-domain solutions
of circuits using LTSpice.

Example 9

5V

2K

3µF
+

vC(0)=-2V

+ 2K

3µF
+

(a) (b)

+ -vR

vC 5V

2K+

(c)

2V
+

5V

2K+

(d)

+ -vR + -vR + -vR

Figure 2.31: Example 9 for first-order RC circuit analysis

Consider the simple circuit of Fig. 2.31(a) with a single capacitor. The
initial value of the capacitor voltage is given at t = 0. Suppose we would like
to determine the voltage across the resistor, vR(t) in the polarity shown. Apply
the procedure:

1. Kill the voltage source: Place a short-circuit in its place as depicted in
Fig. 2.31(b). The equivalent resistance across the capacitor is Req=2K

2. Write the time constant as τ =(2 kΩ)(3 µF)=6 ms

3. Substitute a voltage source with a value equal to the initial voltage of the
capacitor as in Fig. 2.31(c). From KVL we find vRi=7 V.

4. Substitute an open circuit for the capacitor as in Fig. 2.31(d). Since there
is no current in 2 kΩ resistor, vRf=0

5. Write the solution for the desired voltage as

vR(t) = 0 + (7− 0)e−t/6 m = 7e−t/6 m
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Figure 2.32: Example 10 for first-order RC circuit analysis

Example 10

Consider the circuit of Fig. 2.32(a) with a single capacitor. The initial value of
the capacitor voltage is given at t = 0. We would like to determine the current
through the 4 kΩ resistor, i1(t) in the direction shown with two significant
figures. Apply the procedure:

1. Kill the sources: Place a short-circuit for the voltage source and an open-
circuit for the current source as in Fig. 2.32(b). The equivalent resis-
tance across the capacitor is 2 kΩ in parallel with 4 kΩ. From Eq. 2.34:
Req=(2K)∥(4K)=(2K 4K)/(2K+4K)=1.3 kΩ

2. Write the time constant as τ =(1.3 kΩ)(6 µF)=8.0 ms

3. Substitute a voltage source with a value equal to the initial voltage of
the capacitor as in Fig. 2.32(c). From KVL and Ohm’s law we find
i1i=(10−2)/4K=2.0 mA.

4. Substitute an open circuit for the capacitor as in Fig. 2.32(d). Writing
the node equation at vC :

vC − 10

4K
+

vC
2K

− 3 mA = 0

We find vC=22/3=7.3 V. Hence i1f=(10-22/3)/4K=2/3=0.67 mA.

5. Write the solution for the desired current as

i1(t) =
2

3
+ (2− 2

3
)e−t/8m = 0.67 + 1.3e−t/8m mA

A MATLAB code to plot i1(t) is given below. The corresponding graph is shown
in Fig. 2.33 with the tangent to the curve drawn at t=0. Note that the tangent
line intersects the final value line i1f =0.67 mA at t = τ=8 ms.

% MATLAB code to draw i1(t)

clear all % clear all variables in MATLAB
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t=0:0.01:40; % t in milliseconds, t is a vector

i1=2/3+4/3*exp(-t/8); % MATLAB performs an array operation

plot(t,i1,’LineWidth’,2) % plot with a linewidth of 2

grid on % to plot the grid lines

xlabel(’t (ms)’) % to place the x-label on the plot

ylabel(’i_1 (mA)’) % to place the y-label

title(’Example 5’) % to place a title on the graph

hold on

axis([0 40 0 2]); % define the axes limits

y=-1/6*t+2; %calculate the tangent to curve at t=0

plot(t,y,’--’) % draw the tangent with a dashed line at t=0

y1=0*t+2/3;

plot(t,y1,’--’) % draw the asymptote at infinity.

legend([’i_1(t)’],[’Tangent at t=0’],[’Asymptote at infinity’])

0 5 10 15 20 25 30 35 40

t (ms)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

i 1
 (

m
A

)

Example 5

i
1
(t)

Tangent at t=0
Asymptote at infinity

Figure 2.33: Example 10: Plot of i1(t).

Example 11

Consider the circuit of Fig. 2.34(a) with a single capacitor. The initial value of
the capacitor voltage is given at t = 0. We would like to determine the current
through the 4 kΩ resistor, i2(t), in the direction shown. Apply the procedure:

1. Kill the sources: Place a short-circuit for the voltage source and an open-
circuit for the current source as in Fig. 2.34(b). The equivalent resistance
across the capacitor is:

Req = (2K) ∥ (3K) + (4K) ∥ (1K) =
2K 3K

2K + 3K
+

4K 1K

4K + 1K
= 2K

2. Write the time constant as τ =(2 kΩ)(1 µF)=2 ms
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Figure 2.34: Example 11 for first-order RC circuit analysis

3. Substitute a voltage source with a value equal to the initial voltage of the
capacitor as in Fig. 2.34(c). Use nodal analysis to solve the circuit:

� Assign the ground node to the bottom.

� Assign nodes V1, V2, and V3. V1=5 V is already known. So, we need
two equations:

� V3 is easily written in terms of V2. Then, write KCL at one of the
nodes:

V3 : V3 = V2 + 6

V2 : V2−5
2K + V2

3K + V3−5
4K + V3

1K = 0

� Solve the equations to find V2 = −9/5 = −1.8 V and V3 = 21/5 =
4.2 V

� Desired quantity i2i = (V1 − V3)/4K=1/5=0.2 mA

4. Substitute an open circuit for the capacitor as in Fig. 2.34(d). Find i2:
i2f=5 V/5K=1 mA

5. Write the solution for the desired current as

i1(t) = 1 + (
1

5
− 1)e−t/2m = 1− 0.8e−t/2m mA

2.9 Inductors

When a current flows through a wire, a magnetic flux is generated around
the wire. Reciprocally, if a conductor is placed in a time-varying magnetic
field, a voltage is induced in it. From the electrical circuits point of view,
this phenomenon introduces the circuit element, the inductor. Inductors are
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magnetic energy storage elements. Inductor is characterized by its inductance,
measured in Henries (H), named after American scientist Joseph Henry (1797–
1878). Since most inductors used in electrical circuits have the physical form of
a wound coil, a coil symbol is used in circuit diagrams to represent an inductor
(Fig. 2.35(a)). The terminal relations of an inductor is given as

+

-

v(t)

i(t)

(a) (b)

+

-
v2

+

-
v1

i(t)

(c)

+

-
v

(d)

i1 i2
L1 L2

L1

L2

Figure 2.35: (a) Inductor symbol, (b) inductor symbol with a core, (c) inductors
in series, and (d) inductors in parallel.

v(t) = L
di(t)

dt
or i(t) = i(0) +

1

L

∫ t

0

v(ξ)dξ (2.58)

where L is the inductance in Henries, i(t) and v(t) are current through, and
voltage across the inductor. i(0) is the current of the inductor at t=0.

We note that voltage is proportional to the time derivative of current in an
inductor. If i(t) is a DC current, its derivative is zero, and hence the voltage
induced across the inductor is zero. Alternatively, if we apply a DC voltage
across an inductor, the current increases linearly (we can only do this for a
short time; otherwise, the current through the inductor can be very large).

The current of an inductor is always a continuous function of
time. Except when a short-pulse voltage of infinite magnitude is applied,
the inductor current cannot have a sudden jump. On the other hand, the
inductor voltage can be a discontinuous function of time.

Inductors are available in the range 1 nH (nano=10−9) to 1H. Some inductors
are made by simply shaping a piece of wire in the form of a helix. These
are called air-core inductors. When larger inductance values are required in
reasonable physical sizes, we wind the wire around a material which has a higher
permeability compared to air. This material is referred to as core, and such
inductors are symbolized by a bar next to the inductor symbol, as shown in
Fig. 2.35(b). Fig. 2.36 and 2.37 depict photos of different types of inductors.

♦ TRC-11 has three inductors. They are used to form tuned circuits in
conjunction with capacitors.
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Figure 2.36: Photo of different leaded inductors.

Figure 2.37: Various surface-mount inductors

2.9.1 Inductors in series and parallel

The series and parallel combination of inductors are similar to resistor com-
binations, as can be understood from the terminal relation above. For series-
connected inductors, as in Fig. 2.35(c), the currents are the same, the voltages
add up. Therefore, the total inductance for n inductors in series is

L = L1 + L2 + · · ·+ Ln (2.59)

whereas for parallel-connected inductors (Fig. 2.35(d)), voltages are the same
and the currents add up:

L =

(
1

L1
+

1

L2
+ · · ·+ 1

Ln

)−1

(2.60)

2.9.2 Energy stored in an inductor

Like capacitors, the inductors do not dissipate energy. They can only store
the energy. The energy, E, stored in an inductor is determined by the current
through the inductor

E =
1

2
LI2 (2.61)

For example, a 500 µH inductor carrying 1 A stores energy of 0.3 mJ.

2.10 RL circuits

Suppose a resistor, R, is connected in parallel with an inductor, L, as in
Fig. 2.38(a). Initially, the inductor current is equal to iL(0) = Ii. Since R
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Figure 2.38: RL Circuit.

and L are connected in parallel, they have the same terminal voltage:

v = RiR = L
diL
dt

(2.62)

and from KCL we have
iL(t) = −iR(t) (2.63)

Therefore,

L
diL(t)

dt
+RiL(t) = 0 (2.64)

This equation is again a differential equation similar to the capacitor discharge
equation. Its solution is also similar:

iL(t) = Iie
−t/τ (2.65)

where the time constant is τ = L/R.

Water-flow analogy of RL circuit

Consider the water-flow analogy of RL circuit shown in Fig. 2.39. At the

hydraulic resistance

flywheel

water

Figure 2.39: Water flow analogy of RL circuit: flywheel feeding a hydraulic
resistor

beginning, the flywheel with a moment of inertia is turning fast and the flow
rate is the greatest. At that time, the pressure across the hydraulic resistor
is the greatest. As the water flows, the flywheel slows down and the pressure
reduces. The flow rate becomes zero, when the flywheel stops. The energy
stored in the flywheel is dissipated in the hydraulic resistor.
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2.11 Analysis of first-order RL circuits

Like RC circuits, RL circuits containing just one inductor are also called first-
order circuits. The problem can be expressed as a first-order differential equa-
tion. Just like the first-order RC circuits, the solution for any voltage or current
can be written without writing the differential equation. We use the following
procedure:

1. Kill the sources: Place a short-circuit for the voltage sources, and
remove (open-circuit) the current sources. Find the equivalent resis-
tance, Req, across the inductor.

2. Write the time constant as τ = L/Req

3. Using KVL, KCL or nodal analysis, find the initial value, vi or ii
(voltage or current), of the desired quantity, by substituting a current
source with a value equal to the initial current of the inductor.

4. Using nodal analysis, find the final value, vf or if , of the desired
quantity by substituting a short circuit for the inductor.

5. Write the solution for the desired voltage or current variable as

v(t) = vf + (vi − vf )e
−t/τ or i(t) = if + (ii − if )e

−t/τ (2.66)

Example 12
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Figure 2.40: Example 12 for first-order RL circuit analysis

Consider the circuit of Fig. 2.40(a) with a single inductor. The initial value
of the inductor current is given at t = 0. We would like to determine the current
through the 5 kΩ resistor, i1(t) in the direction shown. Apply the procedure:

1. Kill the sources: Place a short-circuit for the voltage source and an open-
circuit for the current source as in Fig. 2.40(b). The equivalent resistance
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across the inductor is 5 k in parallel with 1 k. From Eq. 2.34:

Req = (5K)//(1K) =
5K · 1K
5K + 1K

= 0.83K

2. Write the time constant as τ =3 mH/(0.83 kΩ)=3.6 µs

3. Substitute a current source with a value equal to the initial current of
the inductor as in Fig. 2.40(c). Find the voltage at node V1, using nodal
analysis:

20− V1

5K
= 5 mA+

V1

1K
+ 10 mA

So, V1=−55/6=−9.2 V. From KVL and Ohm’s law we find
ii(0) = i1i = (20− (−9.2))/5K = 5.8 mA.

4. Substitute a short-circuit for the inductor as in Fig. 2.40(d). From KCL we
find the current through the resistor at i1(∞) = i1f : iLf=20/5K=4.0 mA.

5. Write the solution for the desired current as

i1(t) = 4.0 + (5.8− 4.0)e−t/3.6µ = 4.0 + 1.8e−t/3.6µ

i1(t) is plotted in Fig. 2.41 where the tangent to the curve at t=0 is shown.
It intersects i1=4.0 mA line at t = τ = 3.6 ms.
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Figure 2.41: i1(t) of Example 12

Example 13

Consider the circuit of Fig. 2.42(a) with a single inductor. We would like to find
the voltage across the inductor. The initial value of the inductor current is not
given. Instead, we know that the voltage source VS is 4 V for t < 0. So, the
inductor current must have reached its final value for t < 0. First, apply the
part of the procedure to find iL(0

−) (it is the final value of the inductor current
when VS=4 V). Since the inductor current must be continuous, we must have
iL(0

−) = iL(0
+).
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+
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Figure 2.42: Example 13 for first-order RL circuit analysis

1. Substitute a short-circuit for the inductor as in Fig. 2.42(b) while VS = 4V.
We find iL(0

−)=4/0.2K=20 mA. We also know that vL(t)=0 for t < 0.

Hence, the initial value of the inductor current at t = 0 is iL(0
+)=20 mA.

Even though we are not asked about iL(t), we need to find it. Because it is
the continuous variable while the input voltage is changing. Now, apply the full
procedure to find vL(t) for t > 0 when VS=−5 V:

1. Kill the source: Place a short-circuit for the voltage source as in Fig. 2.42(c).
The equivalent resistance across the inductor is 200 Ω.

2. Write the time constant as τ =8 mH/(200 Ω)=40 µs

3. Substitute a current source with a value equal to the initial current of
the inductor as in Fig. 2.42(d). Since the current through the resistor is
20 mA, we can find the voltage vL easily: vL=−5−(0.2K)(20 mA)=−9 V.
This is the initial value of vL.

4. Substitute a short-circuit for the inductor. Hence, the final value of in-
ductor voltage vL(∞)=0.

5. Write the solution for the desired voltage as

vL(t) = −9e−t/40µ

vL(t) is plotted in Fig. 2.43. Note that the inductor voltage is discontin-
uous at t=0, while the inductor current is continuous.

2.12 Ideal Transformer

Transformers are two or more magnetically coupled inductors. The circuit sym-
bol of an ideal transformer with two windings (i.e., two inductors) is given in
Fig. 2.44.

The windings in a transformer are referred to as primary winding and sec-
ondary winding. Transformers transform the voltage and current amplitudes
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Figure 2.43: vL(t) of Example 13
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i1 i2

Figure 2.44: Transformer symbol showing voltage and current directions.

that appear across the primary winding to another pair of amplitudes at the
secondary, and vice versa. The amount of transformation is determined by the
turns ratio n2/n1. The relations in an ideal transformer are as follows:

v2
v1

=
n2

n1
and

i1
i2

=
n2

n1
(2.67)

Water-flow analogy of transformer

Fig. 2.45 depicts the water-flow analogy of a transformer. Two flywheels with
different radii are connected to the same shaft and rotate at the same speed.
The lower pipe with a larger cross-section has a higher flow rate than the upper
pipe, while the pressure in the upper pipe is higher than the pressure in the
lower pipe.

flywheel

flywheel

water

water

Figure 2.45: Water flow analogy of a transformer.

♦ TRC-11 uses two transformers operating at RF frequencies.
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2.13 Circuit Protection Devices

There is always a possibility that voltages much larger than envisaged levels
can appear in electronic circuits. For example, when a lightning strikes to a
power line, it is likely that very high voltage spikes can appear on the voltage
supply. Similarly, very high currents can be drawn from supplies because of
mishandling, such as short circuits.

2.13.1 Varistors

Varistors are nonlinear resistors made of ceramic-like materials like sintered zinc
oxide or silicon carbide. The I − V characteristics of a varistor are depicted in
Fig. 2.46, together with its symbol. When the voltage across the varistor is

V

I

V
+

-

Ioperating
range

Figure 2.46: Varistor characteristics and symbol

within the operating range, varistor exhibits a very large resistance. When the
voltage increases, the resistance falls rapidly, thus taking most of the excess
current due to overvoltage. Varistors are connected in parallel to the circuits to
be protected.

2.13.2 Thermistors

A thermistor is a resistor whose resistance depends on the temperature. There
are two kinds: Negative-temperature coefficient (NTC), resistance decreases as
temperature rises; positive-temperature-coefficient (PTC), resistance increases
as temperature rises.

PTC thermistor

We consider a PTC thermistor as a resettable fuse. PTC is in low-resistance
state at room temperature, but its resistance increases abruptly with increas-
ing temperature beyond a specified limit (reference temperature). The current
through the PTC under normal operating conditions is sufficiently low. At this
current level, the power dissipated by the PTC is low enough, such that the PTC
temperature does not exceed the reference temperature. When a short-circuit
or a high current condition occurs, the current through the PTC increases. The
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power dissipation in the PTC causes an increase in the temperature beyond the
reference temperature, and PTC trips to high resistance state, hence limiting
the current flowing in the circuit. To speed up the temperature rise, such PTC’s
are usually covered by a heat insulator. When the short-circuit or high-current
condition is removed, PTC cools down and returns to its normal low-impedance
state.

PTC’s are usually specified by two current parameters. Rated current (IN )
is the current level, below which the PTC reliably remains in low resistance
mode. Switching current (IS) is the level beyond which the PTC reliably trips
to high resistance mode. Another parameter of significance is RN , the resistance
of PTC at low resistance mode. PTC thermistors are connected in series to the
circuit to be protected.

NTC thermistors

NTC thermistors can be used as an inrush current limiter device in power supply
circuits. Since the power supply capacitor is initially discharged, a very large
current can flow in the rectifier diodes and this large transient current may
destroy the diodes. If NTC thermistors are connected in series with the diodes,
they present a high resistance at the initial turn-on, while they are cold. This
prevents the large inrush current, saving the diodes. As currents flow through
them, they heat up and become much lower resistance. Therefore, they do not
dissipate a significant power in the steady-state. It is common to put a heat
preserving cover around them to keep them hot and hence low resistance.

NTC thermistors are also used as temperature sensors in many applications.
The measured resistance can be converted to temperature if the resistance versus
temperature characteristics is known.

2.13.3 Circuit protection

An overvoltage protection circuit typically has the form shown in Fig. 2.47(a) or
(b). The circuit shown in Fig. 2.47(a) operates as follows: V R1 and PTC1 are

VR1

PTC1
Vline Vout

VR1

Vline Vout

Fuse

(a) (b)

Figure 2.47: Over-voltage protection circuits: Using (a) a PTC and a varactor,
(b) a fuse and a varactor

chosen such that, when there is no over-voltage, the voltage across V R1 is in the
normal range and the current through PTC1 is less than IN . In this case, PTC1

exhibits a low resistance, and V R1 exhibits a very high resistance. When an
over-voltage occurs on the line voltage (for example, due to a flash of lightning in
a thunderstorm), the voltage across V R1 increases beyond its operating range.
The current through V R1 increases rapidly due to the nonlinear nature of the
varistor resistance. This current passes through PTC1 and warms the PTC
up. When this current exceeds IS , PTC1 switches to high impedance mode
isolating the line from the output. To speed up the warming and hence the
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response time, PTC’s are usually placed in a thermally insulating jacket. When
the overvoltage condition is over, PTC cools down and returns to its original
low resistance state. This kind of protection circuits is always present in the
line-voltage inputs of most modern power supplies and power adapters.

Note that a PTC placed in series with a circuit can also be used as an over-
current protection circuit. If the current in the circuit exceeds the predetermined
level, for example, due to an accidental short-circuit, PTC heats up increasing
its resistance, limiting the current.

The circuit shown in Fig. 2.47(b) has a fuse instead of a PTC. A fuse is a
metal wire placed in a glass tube with metal caps on both ends. Fuse metal
melts when too much current flows through it, thereby interrupting the current.
Glass allows a visual inspection of the fuse. Unlike PTC, when a fuse blows, it
does not recover. It has to be replaced with a new fuse.

♦ TRC-11 utilizes one PTC as a resettable fuse.

2.14 Electromechanical Switches

Switches are electrical components that can connect or disconnect paths. Most
common switches are electromechanical switches that contain movable electrical
contacts. In a manual electromechanical switch, an isolated knob helps operate
the switch.

Switches are classified according to their different characteristics. The most
common type of mechanical switches are

� Single-pole single-throw (SPST)

� Single-pole double-throw (SPDT)

� Double-pole single-throw (DPST)

� Double-pole double-throw (DPDT)

Their symbols are shown in Fig. 2.48, which also describes their electrical dif-
ferences. In a double-pole or a multi-pole switch, two or more switches operate
in tandem.

SPST DPSTSPDT DPDT DP3T

Figure 2.48: Symbols of different kind of electromechanical switches.

Switches are also classified according to their mechanical behavior.

� Toggle switch: Manually activated single- or double-throw switch with
two stable states.
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� Push-button switch: Manually activated single- or double-throw switch
with one stable state. The other state of the switch is active only when
a mechanical force is present, as in the case of doorbell switch or reset
button switch of a computer.

� Slide switch: One or more throw switch with a manually activated slider.

The switches may also be activated electrically through an electromagnet.
Such a switch is called relay (see Fig. 2.49), which is activated with a current
through a solenoid. Most relays are non-latching type, in which a spring retracts
the switch to its original position when the solenoid current is lost. Latching
relays operate like toggle switches. A solenoid current toggles the state of the
switches. Photos of some relays are depicted in Fig. 2.50.

NO

NC

NC

NO

Figure 2.49: Symbol of a relay with a DPDT switch with normally-open (NO)
and normally-closed (NC) contacts.

Figure 2.50: Different relays from left to right: SPST, DPDT, 6PDT.

♦ TRC-11 utilizes one double-pole push-button switch and one non-latching
SPDT relay.
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2.15 Examples

Example 14

Using the current divider formula, find the current I1 in Fig. 2.51 with the
reference direction shown.

18mA 2K

1K

3K

I1

Figure 2.51: Circuit for Example 14.

Solution

Using the current divider formula of Eq. 2.35, we find

I1 = −18
1 + 3

1 + 3 + 2
= −12 mA

Note that the negative sign arises due to direction of current source versus the
reference direction of I1.

Example 15

Using nodal analysis find the voltage V1 in Fig. 2.52. Then determine the current
I1 in the reference direction shown.

2mA

+

+
6V5V

3K

2K

1K

+

-

V1

I1

Figure 2.52: Circuit for Example 15.

Solution

We define the bottom wire as ground and write the node equation at V1 as ({V,
mA, kΩ} is a consistent unit set)

V1 − 5

1
+

V1

2
+

V1 − (−6)

3
− 2 = 0
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Solving V1

V1

(
1 +

1

2
+

1

3

)
= 5− 6

3
+ 2 = 5 ⇒ V1 = 2.72 V

Now I1 can be found:

I1 =
−6− V1

3
=

−6− 2.72

3
= −2.91 mA

Example 16

In Fig. 2.53, find the value of the voltage source, V , such that I1=0.

+

I1V

3K

4K

2K

1K 3mA

V1 V2

Figure 2.53: Circuit for Example 16.

Solution

We define the bottom wire as ground and write the node equations at V1 and
V2

V1 − (−V )

3
+

V1

4
+

V1 − V2

2
= 0

V2 − V1

2
+

V2

1
− 3 = 0

Rearranging the equations

V1

(
1

3
+

1

4
+

1

2

)
− V2

(
1

2

)
= −V

3

−V1

(
1

2

)
+ V2

(
1

2
+ 1

)
= 3

Multiplying the first equation by 3 and adding to the second one, we eliminate
V2 to get

V1

(
39

12
− 1

2

)
= −V + 3

To make I1, we must have V1=0, hence

−V + 3 = 0 ⇒ V = 3 V
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5mA

10v 1K 2K

2K5K

1K

5K

V1 V2

+

Figure 2.54: Circuit for Example 17.

Example 17

Find V1 − V2 in the circuit given in Fig. 2.54.

Solution

Apply nodal analysis method to find V1 and V2. KCL at V1 node gives

V1

1K
+

V1 − 10

5K
− 5 mA = 0 or V1 =

35

6
= 5.8 V

KCL at V2 node gives

V2

2K
+

V2 − 10

2K
+ 5 mA = 0 or V2 = 0

Therefore, V1 − V2 = 5.8 V.

Example 18

Assuming that vC(0)=2 V, find i1(t) in Fig. 2.55(a).

+

+

1K 2K

4µF
3mA4V5V 5K+

vC

i1

v1 v2

+

+

1K 2K

3mA4V5V 5K

i1

v1 v2

+

+

1K 2K

3mA4V5V 5K

i1

v1 v2

1K 2K

5K

v1 v2

(a)

(c)

(b)

(d)

2V

+

vC(0)=2V

Req

Figure 2.55: Circuit for Example 18.
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Solution

For t=0 solution, we replace the capacitor with a voltage source of 2 V as in
Fig. 2.55(b), and find i1(0)

i1(0) =
v1 − v2

2
=

(−4)− 2

2
= −3 mA

For t=∞ solution, we replace the capacitor with an open circuit as shown in
Fig. 2.55(c) and apply nodal analysis to find v2(∞)

v2 − v1
2

+
v2
5

− 3 =
v2 − (−4)

2
+

v2
5

− 3 = 0 ⇒ v2(∞) =
10

7

Therefore, the current i1(∞) is found as

i1(∞) =
v1 − v2

2
=

−4− 10/7

2
= −19

7

We find the equivalent resistance, Req, across the capacitor by killing all sources
as depicted in Fig. 2.55(d)

Req = 5 ∥ 2 =
5× 2

5 + 2
=

10

7
KΩ

Hence the time constant, τ , is τ=(10/7)KΩ × (4 µF)=(40/7) ms. Now, we can
write the solution for i1(t) as

i1(t) = i1(∞) + (i1(0)− i1(∞))e−t/τ = −19

7
+

(
−3 +

19

7

)
e−t/(40/7) mA

where t is in ms. Note that 5 V voltage source and its 1 K series resistance has
no effect on the value of i1(t).

Example 19

Assuming that iL(0)=20 mA, find v1(t) in Fig. 2.56(a).

Solution

For t=0 solution, we replace the inductor with a current source of 20 mA as in
Fig. 2.56(b), and write the nodal equation at vA as

vA − 10

0.15
+ 20 +

vA
0.1

+ 25 = 0

We find vA=1.3 V. Therefore, v1(0)=10−1.3=8.7 V. For t=∞ solution, we re-
place the inductor with a short circuit as shown in Fig. 2.56(c) and find v2(∞)
easily as

v1(∞) = 10− 0 = 10 V

We find the equivalent resistance, Req, across the inductor by killing all sources
as depicted in Fig. 2.56(d)

Req = 0.15 ∥ 0.1 = 0.056 KΩ
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100
200
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(a)

(c)
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(d)

20m

Req

vA

Figure 2.56: Circuit for Example 19.

Hence the time constant, τ , is τ=5 mH/0.056 KΩ=89.3 µs. Now, we can write
the solution for v1(t) as

v1(t) = v1(∞)+(v1(0)−v1(∞))e−t/τ = 10+(8.7−10)e−t/89.3 = 10−1.3e−t/89.3 V

where t is in µs.

Example 20

In Fig. 2.57(a), find the capacitor voltage, vC(t), and current, iC(t), for t > 0.
We have vC(0)=7 V and the switch S is closed at 25 ms.

+
10V

2K

5mA

S

10µF
+

vC

iC

6K
+

10V

2K

5mA

S

iC

6K

+
10V

2K

5mA

S

+
vC 6K

2K

5mA

S

6K

(a) (b)

(c) (d)

(e) (f)

+

7V

Req

+
10V

2K

5mA

S

iC

6K

+

9.14V
+

10V

2K

5mA

S

+
vC 6K

Figure 2.57: Circuit for Example 20.
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Solution

We need the find the capacitor voltage vC(25 ms) to act as the initial condition
for the circuit when S is closed. We have switch S open for 0 < t < 25 ms.
For t=0 solution, we replace the capacitor with a voltage source of 7 V as in
Fig. 2.57(b), and find

iC(0) =
10− 7

2
= 1.5 mA

For t=∞ solution (we assume that the switch S is still open!), we replace the
capacitor with an open circuit as shown in Fig. 2.57(c) and find vC(∞) easily
as

vC(∞) = 10 V

We find the equivalent resistance, Req1, across the capacitor by killing all sources
as depicted in Fig. 2.57(d)

Req1 = 2 KΩ

Hence the time constant, τ1, for this time duration is τ1=(2 KΩ)(10 µF)=20 ms.
Now, we can write the solution for vC(t) and iC(t) during 0 < t < 25 ms as

vC(t) = vC(∞)+ (vC(0)− vC(∞))e−t/τ1 = 10+(7−10)e−t/20 = 10−3e−t/20 V

iC(t) = iC(∞) + (iC(0)− iC(∞))e−t/τ1 = 0 + (1.5− 0)e−t/20 = 1.5e−t/20 mA

where 0 < t < 25 is in ms. Now, we can find the initial condition for the case S
is closed.

vC(25) = 10− 3e−25/20 = 9.14 V

The capacitor voltage will be preserved after the switch is closed. This is not
the case for the capacitor current. We find the capacitor current just before the
switch S is closed, t=25−, as

iC(25−) = 1.5e−25/20 = 0.43 mA

At the moment S is closed, we have the circuit as shown in Fig. 2.57(e). We
find the capacitor current at this moment, t=25+, from Fig. 2.57(e) by writing
the node equation as

9.14− 10

2
+ iC +

9.14

6
+ 5 = 0 ⇒ iC(25+) = −6.09 mA

For t=∞ solution while S is closed, we open circuit the capacitor as depicted in
Fig. 2.57(f), and write the node equation to find vC(∞) as

vC − 10

2
+

vC
6

+ 5 = 0 ⇒ vC(∞) = 0

The equivalent resistance, Req2 and the time constant, τ2, for t > 25 ms is found
as

Req2 = 2 ∥ 6 = 1.5 KΩ and τ2 = (10 µ)(1.5 K) = 15 ms

Therefore, we can write the capacitor voltage and current as

vC(t) = 0 + (9.14− 0)e−(t−25)/τ2 = 9.14e−(t−25)/15

iC(t) = 0 + (−6.09− 0)e−(t−25)/τ2 = −6.09e−(t−25)/15

for 25 < t < ∞ in ms. The capacitor voltage and current is plotted in Fig. 2.58.
Note that the capacitor voltage is always a continuous function, while the ca-
pacitor current may be discontinuous.
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Figure 2.58: vC(t) and iC(t) for Example 20.

Example 21

Suppose that the switch in Fig. 2.59 is open for t <0, and closed at t = 0. Find
iL and v1 as a function of time for −∞ < t < ∞.

10v

+

3mA

t=0

iL

v1 200

1mH

Figure 2.59: Circuit for Example 21.

Solution

The circuit contains only one inductor; it is a first-order RL network. Hence we
can use the method given in Section 2.11.

1. For t > 0 the switch is closed. Killing the sources: The voltage source is
short-circuited, the current is open-circuited. In this case, the resistance
seen by the inductance is 200 Ω.

2. The time constant of the network is τ = L/R = 10−3/(200)=5 µs.

3. For t < 0, iL(t) = −3 mA, v1(t) = 0V. At t = 0, the switch is closed, and
iL should be continuous: iL(0

+) = iL(0
−) = −3 mA. At t = 0+, KCL

at v1 node implies that there is no current in 200 Ω resistor. Therefore,
v1(0

+)=10 V.

4. Short-circuit the inductor. We find v1(∞) = 0 and iL(∞) = 10
200 − 3 =

47 mA

5. We write the solutions for t > 0 as

v1(t) = 0 + (10− 0)e−t/5µ and iL(t) = 47 + (−3− 47)e−t/5µ mA
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Example 22

Considering the circuit in Fig. 2.60, at t = 0, the switch is opened, and 1 kΩ
resistor is in the circuit. Find the voltage vo(t).

+
L

50mH 10

1K

12V t=0

vo(t)
iL(t)

Figure 2.60: Circuit for Example 22.

Solution

1. 1 kΩ resistor is shorted for t < 0, while 10 Ω resistor is in the circuit. We
have vo(t) = 0 for t < 0. The current iL(0

−) just before the switching,
can be found by short-circuiting the inductor: iL(0

−) = 12/10 = 1.2 A.

2. Since the inductor current is continuous, the inductor current just after
the switching, iL(0

+) = 1.2 A. Hence vo(0
+) = 1.2 · 1000 = 1200 V!

3. At t = ∞, we short-circuit the inductor. We determine
iL(∞) = 12/1010 = 11.9 mA and vo(∞) = 11.9 V.

4. The time constant is found as τ = 0.050/1010 = 49.5µs.

5. We write the voltage, vo(t) for t > 0 as

vo(t) = 11.9 + (1200− 11.9)e−t/τ

which is plotted in Fig. 2.61.

Note that this circuit generates a 1200 V pulse from a 12 V battery.
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Figure 2.61: vo(t) as a function of time.
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2.16 Problems

(Answers of most problems are in p. 311.)

1. Find the values and tolerances of resistors with the following color codes:

(a) green-blue-red-silver

(b) orange-white-yellow-silver

(c) violet-green-brown-gold

2. Find the average power delivered or dissipated by the sources and resistor
in Fig. 2.62. Make sure that the average power delivered is equal to the
average power dissipated.

+
V

R

IV

IR5 cos ωt
333Ω

Figure 2.62: Circuit for Prob. 2.

3. Find the rms value of the periodic voltage waveform shown in Fig. 2.63.

T

5

-5

v(t)

Figure 2.63: Voltage waveform for Prob. 3.

4. Find Req in the circuits given below (two significant figures, in Ω, K or M
as appropriate):

5. Write down the rms values (two significant figures) of following voltage or
current waveforms:

(a) 10 cos(1000t) V (b) 1.4 sin(314t+ 30o) A (c) 28 cos(ωt+ θ) V

6. What are the frequencies of the waveforms in Problem 5 (three significant
figures)?

7. A rechargeable Li-ion (lithium-ion) battery of a mobile phone has a nomi-
nal voltage of 3.7 V and a capacity of 650 mA-hr. How long can a charged
battery supply energy to a 330 Ω resistor at its rated voltage? Assume
that the internal resistance is very small compared to 330 Ω. What is the
total energy (in joules) delivered to the resistor?
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470

5151Req

(a)

Req

(b)

47

82

12 Req

(c)

12K

22K

15K

3.9K

6.8K

Req

1.2K

470

1K

1K 2.2K

(d)

Req
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2.7K 330
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51

Figure 2.64: Resistor networks for Prob. 4.

+

12V

1K 2K

3K

4K 5K
+

-
V1

+

-
V2

Figure 2.65: Circuit for Prob. 8.

8. Using the voltage divider formula, find the voltages V1 and V2 in Fig. 2.65.

9. Determine the current I1 in Fig. 2.66. Note that {V, µA, MΩ} is consistent
unit set.

1.5M 2µA 3V

+

1.2M 820K

2.2M

I1
560K

Figure 2.66: Circuit for Prob. 9.

10. Find the marked variables using nodal analysis of the circuits in Fig. 2.67
(three significant figures). Check your results using LTSpice.

11. In Fig. 2.68, find and plot iL(t) and vR(t) with iL(0)=30 mA. Initially S
is closed, at t1=40 µs, S is opened. Hint: You need to find the inductor
current, iL(t1) to act as the initial condition for the circuit when S is
opened.
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Figure 2.67: Circuits for Prob. 10.

S

90mA 12ViL1K

+

20mH
vR

+ -

15K

Figure 2.68: Circuit for Prob. 11.

12. Find and plot iL(t) in Fig. 2.69 with iL(0)=5 mA.

13. Consider the circuits in Fig. 2.70(a) and (b). Both circuits are driven by
a step current source iS(t), shown in Fig. 2.70(c). Find and sketch iC(t),
vC(t), iL(t), and vL(t). Assume that vC(0) = 0 and iL(0) = 0. Verify
your results with LTSpice.

14. Find the resistance of 500 m copper wire of diameter 0.1 mm.

15. Steel reinforced aluminum wires are used in long-distance high-voltage
overhead lines (HVOHL). “954 ACSR” wire (954 tells the type of conduc-
tor and ACSR stands for “Aluminum Conductor-Steel Reinforced”) has a
cross-section of 485 mm2 and a resistance (per unit length) of 0.059 Ω/km.
HVOHL are carried by transmission line poles separated by approximately
400 m, on average. Considering that the wire is made of aluminum pre-
dominantly, calculate the mass of the three-phase line between two poles.
Note that aluminum has a density of 2.7. Calculate the power loss if
32 MW of power is carried over 200 km at a 380 KVrms line. What
must be the cross-section of the wire to have the same loss over the same
distance if the line voltage is 34.5 KVrms? Calculate the mass for this
case.

16. Find the ratio of R1 to R2 such that the output of the resistive voltage
divider of the circuit given in Fig. 2.71(a) is Vout = −8 V . Find a pair of
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iL
1K 20mH+

−vIN

100 5mH

150

vIN

t

10

-10

100µs

Figure 2.69: Circuit for Prob. 12.

Figure 2.70: Circuits for Prob. 13.

5% tolerance standard resistor values (given in p. 32) for R1 and R2 such
that the above ratio is satisfied as much as possible. What is the percent
error?

17. Consider the AC voltage divider formed by two capacitors of Fig. 2.71(b).
Find a pair of standard 10% tolerance capacitor values (given in p. 42) to
obtain vout(t) = 5 sin(ωt). Find the maximum and minimum vout values
considering the tolerance of the capacitors.

18. Find the maximum capacitance of an air variable capacitance (the left-
most capacitor in Fig. 2.24), with plates in the form of a half-circle of
radius 13 mm. There are 18 plates on the fixed side, and 18 plates on the
moveable side. The air gap between the plates is 0.6 mm. Note that there
are 35 parallel plate capacitors in this structure.

19. For the circuit shown in Fig. 2.72, the voltage source is as shown in the
same figure. (a) Find iL(0

−) and vL(0
−). (0− denotes the time right

before t=0). (b) Find iL(0
+) and vL(0

+) (0+ denotes the time right after
t=0). (c) Find and plot vL(t) for −∞ < t < ∞. Check your results with
LTSpice.

20. Consider the amplifier given in Fig. 2.73, which has an input impedance
of Rin. The voltage gain of the amplifier is 10. Express the voltage gain
in dB. What is the power gain when Rin = RL? What is the power gain
when Rin = 10RL? In dB?

21. Considering the circuit given in Fig. 2.74, find and plot the current in the
inductor, iL(t), as a function of time between 0 < t < 10 µs.
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R1

R2

-15V

Vout

(a)

+

12 sin(ωt)

C1

C2

(b)

vout(t)

Figure 2.71: Circuits for Prob. 16 and 17

+
−

1K

2K

L=3mH

i
L

v
L

+

Vin

3V

-2V

Vin

t

Figure 2.72: Circuit for Prob. 19

22. For the circuit of Fig. 2.75, find and plot the voltage of the capacitor,
vC(t), as a function of time between 0 < t < 30 ms.
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Figure 2.73: Circuit for Prob. 20

t0

+
vIN

vIN

10V

5µs

iL(t)

100µH

iL(0)=0

Figure 2.74: Circuit for Prob. 21

t0

+
iin(t) vC(t)

iin(t)

5mA

vC(0)=-2

10µF

12ms

Figure 2.75: Circuit for Prob. 22



Chapter 3

AUDIO CIRCUITS

The most natural way of communication for people is to speak to each other.
The voice is transmitted and received in electronic communications, to enable
people communicate over large distances. The first thing that must be done
is to convert voice into an electrical signal, and process it before transmission.
The last process in a transceiver, on the other hand, is to recover voice from the
received RF signal. The audio circuits of TRC-11 are discussed in this chapter.
The mathematical tools necessary to analyze circuits used in TRC-11 are also
developed.

English electrical engineer Oliver Heaviside (1850–1925) adapted complex
numbers to analyze electrical circuits. Complex numbers are very important in
Electrical Engineering, so we give a brief summary of complex numbers here.

3.1 Complex numbers

The equation x2 + 1 = 0 has no real roots. Solution of this equation can be
written as x = ±

√
−1. To handle such problems, we use the complex number

system.
A complex number z has the rectangular form

z = a+ jb where j =
√
−1 (3.1)

and a and b are real numbers. j is called the imaginary unit and has the property
of j2 = −1.* a is the real part and b is the imaginary part:

Re{z} = a and Im{z} = b (3.2)

This complex number can be shown as a vector in the complex plane as demon-
strated in Fig. 3.1(a). Two complex numbers a+ jb and c+ jd are equal if and
only if a = c and b = d. Real numbers are a subset of complex numbers. If the
real part of a complex number is zero, then it is called an imaginary number.
For example, 2+ j0 and −11+ j0 are real numbers, while 0− j6 is an imaginary
number.
The complex conjugate of a complex number z = a+ jb is z∗ = a− jb.

*Electrical Engineers prefer to use the symbol j rather than i, since the symbol i is reserved
for current.

Koymen & Atalar 77 ANALOG ELECTRONICS
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Real

Imag

a

b
zr

φ Real

Imag

(a) (b)

z1

z2

z1+z2

Real

Imag

z1
z2

z1-z2

(c)

Figure 3.1: (a)Vector showing the complex number z = a + jb, (b) addition of
two complex numbers, (c) subtraction of two complex numbers.

The algebra of complex numbers is the same as the algebra of real numbers with
j2 replaced by −1:
Addition (see Fig. 3.1(b)):

z1 + z2 = (a+ jb) + (c+ jd) = (a+ c) + j(b+ d)

Subtraction (see Fig. 3.1(c)):

z1 − z2 = (a+ jb)− (c+ jd) = (a− c) + j(b− d)

Multiplication:

z1z2 = (a+ jb)(c+ jd) = (ac− bd) + j(bc+ ad)

Division:
z1
z2

=
a+ jb

c+ jd
=

ac+ bd

c2 + d2
+ j

bc− ad

c2 + d2

1

z2
=

1

c+ jd
=

c

c2 + d2
− j

d

c2 + d2

Absolute value:
|a+ jb| =

√
a2 + b2

If z = a+ jb, then
zz∗ = |z|2 = a2 + b2

We also have
|z1z2| = |z1||z2|

and ∣∣∣∣z1z2
∣∣∣∣ = |z1|

|z2|
if z2 ̸= 0

There is a relation between sinusoids and exponential function as follows:

ejϕ = cosϕ+ j sinϕ (3.3)

This is called Euler’s formula. In other words, cosϕ is the real part of ejϕ, and
sinϕ is the imaginary part. Sinusoids can be expressed as

cosϕ = Re
{
ejϕ
}

(3.4)
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or

cosϕ =
ejϕ + e−jϕ

2
(3.5)

and
sinϕ = Im

{
ejϕ
}

(3.6)

or

sinϕ =
ejϕ − e−jϕ

2j
(3.7)

in turn. The magnitude of this exponential function is

|ejϕ| = 1 (3.8)

regardless of the value of the argument ϕ.
If z = a+ jb we can write the complex number z in trigonometric form as

z = r(cosϕ+ j sinϕ) (3.9)

the exponential form as (see Fig. 3.1)

z = rejϕ (3.10)

and the polar form as
z = r∠ϕ (3.11)

r =
√
a2 + b2 and ϕ = tan−1

(
b

a

)
(3.12)

With z1 = r1e
jϕ1 and z2 = r2e

jϕ2 , we write the product as

z1z2 = r1r2e
j(ϕ1+ϕ2)

or
z1z2 = r1r2∠(ϕ1 + ϕ2)

the division as
z1
z2

=
r1
r2

ej(ϕ1−ϕ2)

or
z1
z2

=
r1
r2

∠(ϕ1 − ϕ2)

Clearly, the multiplication and division are easily performed in exponential or
polar forms, while the addition and subtraction are easier in rectangular form.

3.2 Phasors

In Electrical Engineering we frequently deal with sinusoidal signals; sometimes
we add them, sometimes we subtract them from each other. Consider two
sinusoids at the same frequency ω, but with a differing amplitude and phase.
The sum of these sinusoids can be written as

A cos(ωt+ θ1) +B cos(ωt+ θ2) =

=
√
A2 +B2 − 2AB cos(θ2 − θ1) cos

(
ωt+ tan−1

(
A sin θ1+B sin θ2
A cos θ1+B cos θ2

))
(3.13)
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Just the sum of two sine waves at the same frequency is a rather clumsy equation.
It is obviously difficult to manipulate equations of sine waves using the time-
domain notation above.

We can simplify a great deal if we use the Euler’s formula. From Eq. 3.4 we
can write

A cos(ωt+ θ1) = Re{Aej(ωt+θ1)} = Re{Aejωtejθ1} (3.14)

similarly
B cos(ωt+ θ2) = Re{Bej(ωt+θ2)} = Re{Bejωtejθ2} (3.15)

To simplify the notation, we can get rid of the ejωt term since the frequency is
common. To simplify further we can also get rid of the real part operator Re:

A cos(ωt+ θ1) ⇒ Aejθ1 (3.16)

B cos(ωt+ θ2) ⇒ Bejθ2 (3.17)

Hence, we represent a sine wave with a complex number with no time depen-
dence. The magnitude of the complex number represents the amplitude of the
sine wave and the phase of the complex number corresponds to the phase of the
sine wave. It is also possible to write the complex numbers in polar coordinates
as A∠θ1 or B∠θ2. We call this notation as phasor notation.

We can easily return to the time-domain notation by taking the real part of
the phasor multiplied by ejωt.

Re{Aejθ1ejωt} = A cos(ωt+ θ1) (3.18)

Re{Bejθ2ejωt} = B cos(ωt+ θ2) (3.19)

With this phasor notation, the sum of the two sine waves can be found easily
by adding two complex numbers:

A cos(ωt+ θ1) +B cos(ωt+ θ2) ⇒ A∠θ1 +B∠θ2 (3.20)

Since adding complex numbers is best done in rectangular form, we write

A∠θ1 +B∠θ2 = (A cos θ1 + jA sin θ1) + (B cos θ2 + jB sin θ2) =

= (A cos θ1 +B cos θ2) + j(A sin θ1 +B sin θ2) (3.21)

We can convert the final result to time-domain by multiplying this complex
number by ejωt and taking its real part to get the same result given in Eq. 3.13.
Obviously, adding two complex numbers is much easier than dealing with the
trigonometric identities of Eq. 3.13.

Example 1

Below are some examples of conversion from time-domain to phasor notation.

5 cos(ωt+ 23o) ⇒ 5ej23
o

3.2 sin(ωt) = 3.2 cos(ωt− π/2) ⇒ 3.2e−jπ/2 = −3.2j

−10 cos(ωt) ⇒ −10
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10 cos(ωt+ 12o) + 8 cos(ωt− 76o) ⇒ 10ej12
o

+ 8e−j76o =

= 10(cos 12o + j sin 12o) + 8(cos (−76o) + j sin(−76o)) =

= 9.78 + j2.08 + 1.93− j7.76 = 11.71− j5.68

in the last example, we used Eq. 3.9 to convert from the polar form to rectangular
form.

In the following examples, we use Eq. 3.18 to convert the phasors to time
domain:

7e−j12o ⇒ 7 cos(ωt− 12o)

6 + j6 = 6
√
2ejπ/4 ⇒ 6

√
2 cos(ωt+ π4)

3− j4 = 5ej tan
−1(−4/3) = 5e−j53.1o ⇒ 5 cos(ωt− 53.1o)

In the last example, we first used the formulas of Eq. 3.12 to convert the rect-
angular form complex number to the exponential form.

3.2.1 Derivative operator

Let us find what the derivative operator does in phasor domain:

d

dt
A cos(ωt+ θ) = −Aω sin(ωt+ θ) ⇒ −ωAej(θ−π/2) = jωAejθ (3.22)

Hence, the derivative operator in the time-domain corresponds to a multiplica-
tion by jω in the phasor domain.

3.2.2 Integration operator

Let us find what the integration means in phasor domain:∫
A cos(ωt+ θ) =

A

ω
sin(ωt+ θ) ⇒ A

ω
ej(θ−π/2) =

1

jω
Aejθ (3.23)

Hence, the integration operation in the time-domain corresponds to a division
by jω in the phasor domain.

3.2.3 Resistor with sinusoidal excitation

If a resistance has sinusoidal voltage or current then we can use phasors. Ohm’s
law in the time domain is similar in the phasor domain:

vR = RiR ⇒ VR = RIR (3.24)

Therefore, the resistance R in phasor domain is unchanged.

3.2.4 Capacitor with sinusoidal excitation

For a capacitor with sinusoidal voltage or current, we can write

iC = C
d

dt
vC ⇒ IC = jωCVC or VC =

1

jωC
IC (3.25)
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Imag

Real

Imag

(a) (b)

VC

IC=VCjωC VL =ILjωL

IL

Figure 3.2: Current and voltage phasors for a capacitor (a) and for an inductor
(b).

Note that the resulting phasor equation is like Ohm’s law with 1/(jωC) replac-
ing R. The current and voltage phasors for a capacitor are demonstrated in
Fig. 3.2(a).

We note that real-life capacitors behave like that given in Eq. 3.25 only
up to a frequency limit (SRF) � due to the inductance of the capacitor leads
or internal connections. Above this frequency limit, the capacitor acts like a
small inductor! Since small capacitors have higher SRF, it is recommended to
choose the smallest capacitor that will satisfy the requirements. To extend the
frequency range of capacitors, often small capacitors with higher SRF is placed
in parallel with larger capacitors.

3.2.5 Inductor with sinusoidal excitation

Similarly, an inductor with a sinusoidal voltage or current is specified in phasor
domain as

vL = L
d

dt
iL ⇒ VL = jωLIL (3.26)

In this case, the phasor equation is also like Ohm’s law with jωL replacing R.
The current and voltage phasors for an inductor are shown in Fig. 3.2(b).

Real-life inductors behave like that given in Eq. 3.26 only up to a frequency
limit (SRF)� due to interwinding capacitance. Above this frequency limit, the
inductor acts like a small capacitance. Therefore, a designer should choose the
smallest inductor value satisfying the requirements.

3.3 Linear circuits

Linearity is a fundamental concept in circuit analysis. Consider the block dia-
gram in Fig. 3.3. A circuit is called linear if it satisfies the following relation:

If input signals x1(t) and x2(t) (voltage or current) yield the output signals
y1(t) and y2(t), respectively, then a linear combination of inputs, ax1(t)+bx2(t)
yields the same combination of the individual outputs, ay1(t) + by2(t), where a
and b are real numbers.

�SRF is the self-resonance frequency (SRF). It can be found in the data sheets of capacitors.
�The self-resonance frequency of inductors can be found in the data sheets of off-the-shelf

inductors or it can be measured for an in-house manufactured inductor.
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Figure 3.3: A linear circuit block with an input signal x(t) and an output signal
y(t).

Consider a circuit formed by a single resistor. If the input signals to the
resistor are currents i1(t) and i2(t), and the output signals v1(t) and v2(t) is the
voltages developed across the resistor, then we have

v1(t) = Ri1(t) and v2(t) = Ri2(t) (3.27)

If we apply a combination of two inputs ai1(t) + bi2(t), then the total voltage
developed across the resistor is

v(t) = R[ai1(t) + bi2(t)] = aRi1(t) + bRi2(t) = av1(t) + bv2(t) (3.28)

Hence, a resistor is a linear circuit element.
Consider an inductor. If the input signals to the inductor are currents i1(t)

and i2(t), and the output signals v1(t) and v2(t) are the voltages developed
across the inductor, then we have

v1(t) = L
d

dt
i1(t) and v2(t) = L

d

dt
i2(t) (3.29)

If we apply a combination of two inputs ai1(t) + bi2(t), then the total voltage
developed across the resistor is

v(t) = L
d

dt
[ai1(t) + bi2(t)] = aL

d

dt
i1(t) + bL

d

dt
i2(t) = av1(t) + bv2(t) (3.30)

Hence, an inductor is also a linear circuit element.
Similarly, a capacitor and a transformer are also linear elements.
However, an ideal diode is not a linear element. We can prove this using

a counter example: Suppose the input signals to an ideal diode are currents
i1 = 2 mA and i2 = 1 mA, and the output signals v1 and v2 is the voltages
developed across the diode, from Eq. 4.1 we have

v1 = 0 and v2 = 0 (3.31)

We apply a combination of two inputs with a = −5 and b = 1, or −5i1 + i2 =
−9 mA, then the total voltage developed across the ideal diode should also be 0.
Obviously, this is not true, because the voltage is zero only for positive currents.
Therefore, an ideal diode is not a linear circuit element.

3.3.1 Steady-state solution of linear RLC Circuits with
sinusoidal excitation

Circuits composed of RLC components are linear. If the excitations in these
circuits are sinusoidal, we can use phasors to simplify solution of such circuits.
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We are not limited to first-order circuits with just one capacitor or one inductor.
We can deal with any number of capacitors and inductors.

The phasor method is not able to find the transient solution that occurs right
after the sinusoidal signal is applied. Rather, it can find the steady-state solution
long after the sinusoidal signal is applied and transients have disappeared. Note
that this method is applicable only when the excitation to the circuit sinusoidal.
Moreover, the circuit should not contain any nonlinear elements like diodes.

To find the steady-state solution of linear circuits with sinusoidal exci-
tation, we use the following procedure:

1. Replace inductors with jωL and capacitors with 1/(jωC)

2. Replace voltage or current source with the corresponding phasor.

3. Solve the circuit using nodal analysis.

4. If needed, convert the desired quantities to the time-domain

We cannot use this method for circuits containing non-sinusoidal sources, it
applies only to circuits with sinusoidal excitation. Note also that initial values
of capacitor voltages or inductor currents do not play a role in this procedure
since we find the steady-state solution. The procedure is best understood with
the following examples.

Example 2

Consider the circuit shown in Fig. 3.4(a) and find the voltage across the capac-
itor.

Since the excitation is sinusoidal and the circuit contains only linear elements
we can use the procedure above:

1K

5µF
+

-
vC5cos100t

+

1K

+

-

+
5 VC-j2K

(a) (b)

Figure 3.4: Example 2 for the phasor solution of an RC circuit

1. Replace the capacitor with 1/(jωC) = 1/(j100 × 5 × 10−6) = −j2000 =
−j2K

2. Replace the voltage source with the phasor 5.

3. Referring to Fig. 3.4(b), the voltage phasor across the capacitor can be
found using nodal analysis

VC − 5

1K
+

VC

−j2K
= 0
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Hence

VC =
−j2K

1K − j2K
5 =

−j2(1 + j2)

1 + 4
5 = 4− j2 =

√
20e−j26.5o

4. In time domain, we have vC(t) =
√
20 cos(100t− 26.5o) V

Example 3

Consider the circuit shown in Fig. 3.5(a) and find the voltage v1(t).

(a) (b)

2µH

3nFmA
3sin(107t) 50

v1

50

j20

-j33.3-j3
mA

V1

Figure 3.5: Example 3 for the phasor solution of an RLC circuit

We have a linear circuit excited with a sinusoidal signal. We can use the
phasor method:

1. Replace the inductor with jωL = j107×2×10−6 = j20, and the capacitor
with 1/(jωC) = 1/(j107 × 3× 10−9) = −j33.3

2. Replace the current source with the phasor −j3× 10−3.

3. Referring to Fig. 3.4(b), the voltage phasor across the capacitor can be
found from nodal analysis:

−j3× 10−3 =
V1

50
+

V1

j20− j33.3
= V1

50− j13.3

−j13.3× 50

Hence, we find

V1 =
−1.99

50− j13.3
=

1.99∠180o

51.7∠− 14.9o
= 0.038∠194.9o

where we converted the nominator and the denominator from rectangular
form to polar form to simplify complex division.

4. In time domain, we have v1(t) = 0.038 cos(107t+ 194.9o) V

3.3.2 Power relation for phasors

The average power, P , dissipated on a resistor is given by Eq. 3.32:

P =
v2rms

R
(3.32)
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For a sinusoidal signal with v(t) = Vp cos(ωt+ θ), we find

vrms =

√
1

T

∫ T

0

V 2
p cos2(ωt+ θ)dt =

Vp√
2

(3.33)

Hence, the average power is

P =
V 2
p

2R
(3.34)

In phasor notation, the signal v(t) is represented by the phasor V = Vpe
jθ and

the average power for a resistor can be written as

P =
|V |2

2R
=

V V ∗

2R
=

V I∗

2
=

II∗R

2
=

|I|2R
2

(3.35)

where I is the current phasor and I = V/R or I∗ = V ∗/R.

In general, for circuits where the current and voltage may have phase
difference, the power dissipated in the circuit can be written as

P = Re
{
V I∗

2

}
= Re

{
V ∗I

2

}
(3.36)

For a capacitor with IC = jωCV , the average power is given by

P = Re
{
−V jωCV ∗

2

}
=

|V |2

2
Re {−jωC} = 0 (3.37)

giving zero, consistent with the fact that a capacitor does not dissipate power.
It only stores energy. The same condition holds for an inductor.

3.3.3 Impedance

We have observed that the definition of phasors allowed us to convert the dif-
ferential relations in time into algebraic relations in angular frequency.

Impedance, Z, of a network is defined as the ratio of voltage phasor to
current phasor:

Z = R+ jX =
V

I
(3.38)

Z is in general a frequency dependent complex quantity and has the unit of
Ω. Its real part, R, is known as the resistance and its imaginary part, X, is
referred to as reactance.

Impedance is convenient to use when components are connected in series:
The impedances of components can be added to find the total impedance.

3.3.4 Admittance
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The inverse of Z is called admittance and it is denoted by Y :

Y = G+ jB =
1

Z
=

I

V
(3.39)

The unit of Y is Siemens (S), named after German inventor Ernst Werner von
Siemens (1816–1892). The unit of the admittance is also commonly referred to
as mho, and its symbol 0 (an upside-down Ω). The real part of the admittance,
G, is conductance and the imaginary part, shown by B, is the susceptance.

In circuits with many parallel components, it is more convenient to use
admittance rather than impedance: Admittances of parallel circuits can simply
be added.

Example 4

Let us find the impedance of the series connected circuit of Fig. 3.6(a) and the
admittance of the parallel connected circuit of Fig. 3.6(b) at the given frequen-
cies.

10

47pFf=20MHz

(a)

470 82pF

(b)

820nH f=5 MHz

10µH

R1 L1 C1Z1 = ? R2

C2L2
Y2= ?

Figure 3.6: Example 4 for impedance and admittance calculation

Z1 = R1 + jωL1 +
1

jωC1
= 10 + j(1.26 · 108)(820 · 10−9)

+
1

j(1.26 · 108)(47 · 10−12)
= 10 + j103− j169 = 10− j66 Ω

Y2 =
1

R2
+ jωC2 +

1

jωL2
=

1

470
+ j(3.14 · 107)(82 · 10−12)

+
1

j(3.14 · 107)(10 · 10−6)
== 2.13 · 10−3 + j2.58 · 10−3 − j3.18 · 10−3 =

= 2.13− 0.61 m0

Example 5

Consider the circuit given in Fig. 3.7. The impedance can be found by applying
a voltage phasor V and finding I in terms of it:

I =
V

100
+

V

jω(2 · 10−6) + 1/(jω(3 · 10−9))



3.3. LINEAR CIRCUITS 88

2µH

3nF100V

I

+

-

Figure 3.7: Example 5 for impedance and admittance calculation

Hence the impedance is given by

Z(ω) =
V

I
=

100[(1/3) · 109 − ω2(2 · 10−6)]

(1/3) · 109 − ω2(2 · 10−6) + jω100

the resistive part is

R(ω) = Re{Z} =
100[(1/3) · 109 − ω2(2 · 10−6)]2

[(1/3) · 109 − ω2(2 · 10−6)]2 + ω2104

and the reactance is given by

X(ω) = Im{Z} =
−jω104[(1/3) · 109 − ω2(2 · 10−6)]

[(1/3) · 109 − ω2(2 · 10−6)]2 + ω2104

Note that the real part of the impedance acts like a frequency dependent resistor.
On the other hand, the admittance is found as

Y (ω) =
I

V
=

(1/3) · 109 − ω2(2 · 10−6) + jω100

100[(1/3) · 109 − ω2(2 · 10−6)]

Hence the conductance is

G(ω) = Re{Y } =
1

100

and the susceptance is

B(ω) = Im{Y } =
jω

(1/3) · 109 − ω2(2 · 10−6)
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3.4 Transfer function

For networks with an input voltage phasor, Vi, and an output voltage
phasor, Vo, we define the ratio of output to input as a transfer function, H:

H(ω) =
Vo(ω)

Vi(ω)
(3.40)

a complex function of ω. It specifies the output with respect to input for
any radial frequency ω.

The magnitude of the transfer function |H(ω)| is typically plotted as a graph
to visualize the frequency response of the network. Decibels (dB) may be the
preferred vertical axis to be able to see very small and very large values on the
same graph.

|H(ω)|dB = 20 log10

∣∣∣∣Vo(ω)

Vi(ω)

∣∣∣∣ (3.41)

Moreover, the frequency axis may be plotted as a logarithmic axis to be able to
see the response in a wide range of frequencies.

3.4.1 Transfer function of first-order circuits

The following procedure can be used to draw the transfer function (in dB) of a
first-order circuit on a logarithmic frequency scale:

1. Write the complex transfer function, H(ω), in one of the following
three generic forms:

A
1

1 + jωX
, A

jωX

1 + jωX
, A

1 + jωX

1 + jωY
(3.42)

2. Draw the low-frequency asymptote of |H(ω)|dB for ω → 0.

3. Draw the high-frequency asymptote of |H(ω)|dB for ω → ∞.

4. The asymptotes have a slope of either 0 or ±20 dB/decade.

5. For the first two generic forms, the asymptotes should intersect at the
3-dB corner frequency of

ωc =
1

X
or fc =

1

2πX
(3.43)

6. For the last generic form, draw the mid-frequency asymptote with a
slope of ±20 dB/decade between the two corner frequencies:

fc1 =
1

2πX
and fc2 =

1

2πY
(3.44)

7. Draw the transfer function approximately using the asymptotes.
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Example 6

To find the transfer function of the first-order circuit shown in Fig. 3.8(a), we
use the procedure of page 89 and write

10µΗ 100

200Vin Vo

-3.52

dB

4.77MHz

-20dB/dec

(a) (b)

Figure 3.8: (a) A first-order circuit for transfer function evaluation, (b) Transfer
function.

1. Using the voltage divider formula, we find

H(ω) =
Vo

Vin
=

200

200 + 100 + jω 10−5
=

2

3

1

1 + jω 10−5/300
(3.45)

which is like the first generic form of Eq. 3.42.

2. The low-frequency asymptote for ω → 0 is |H(ω)|dB = 20 log10(2/3) =
−3.52 dB with 0 slope.

3. The high-frequency asymptote of |H(ω)|dB for ω → ∞ has a slope of
−20 dB/dec, since the transfer function amplitude drops as the frequency
is increased.

4. Since the asymptotes intersect at

fc =
1

2π

300

10−5
= 4.77 MHz

we can draw the high frequency asymptote accordingly.

5. The transfer function is drawn approximately as in Fig. 3.8(b) using the
asymptotes.

Example 7

To find the transfer function of the first-order circuit shown in Fig. 3.9(a), we
use the same procedure:

1. Using the voltage divider formula, we find

H(ω) =
Vo

Vin
=

1K + 1/(jω(2.2n))

22K + 1K + 1/(jω(2.2n)))
=

1 + jω (2.2n)(1K)

1 + jω (2.2n)(23K)
(3.46)

The transfer function fits the last generic form of Eq. 3.42.
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Vin Vo

dB

-20dB/dec

(a) (b)

22K
1K

2.2n

0

3.1 kHz

72 kHz

-27

Figure 3.9: (a) A first-order circuit for transfer function evaluation, (b) Transfer
function.

2. The low-frequency asymptote for ω → 0 is |H(ω)|dB = 20 log10(1) = 0 dB
with 0 slope.

3. The high-frequency asymptote of |H(ω)|dB for ω → ∞ is |H(ω)|dB =
20 log10(1/23) = −27.2 dB with 0 slope, since the transfer function stays
constant at high frequencies.

4. Since the asymptotes intersect at

fc1 =
1

2π

1

(2.2n)(23K)
= 3.1 kHz fc2 =

1

2π

1

(2.2n)(1K)
= 72.3 kHz

we can draw the mid-frequency asymptote with slope −20 dB/dec accord-
ingly.

5. The transfer function is drawn approximately as in Fig. 3.9(b) using the
three asymptotes.

3.4.2 Transfer function of higher-order circuits

The method given in page 89 can not be used for higher order circuits. After
finding the transfer function, one may try to find the low- and high-frequency
asymptotes. But at mid-frequencies, a numerical evaluation is generally neces-
sary.

LTSpice can also be used to plot transfer function of a linear circuit of a
higher order (see page 302 for a tutorial on a second-order circuit).

Example 8

Consider the network given in Fig. 3.10. Let us find the transfer function and
plot the magnitude of the transfer function. We apply a voltage phasor at the
input and find the output phasor using nodal analysis:

H(ω) =
1/(jω(3 · 10−9))

10 + jω(2 · 10−6) + 1/(jω(3 · 10−9))
=

1

1− ω2(6 · 10−15) + jω(3 · 10−9)
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2µH
3nF

+

-
Vi Vo

+

-

10

Figure 3.10: Example for transfer function calculation

The low-frequency asymptote is found as |H(ω)|dB = 20 log10(1) = 0 dB. The
high-frequencies are dominated by the second term of the denominator with ω2.
Hence the slope of the high-frequency asymptote is −20× 2 = −40 dB/dec.

The magnitude |H(ω)| can be plotted in dB scale on a logarithmic frequency
axis using the following MATLAB code:

% MATLAB code to plot the transfer function

clear all % clear all variables in MATLAB

hold off

fmin=1e5; %minimum frequency in Hz

fmax=2e7; %maximum frequency in Hz

C=3e-9; % Capacitor value in F

L=2e-6; % Inductor value in H

R=10; % resistance in Ohms

f=fmin:fmin:fmax; % Frequency vector

w=2*pi*f; % angular frequency vector

H=1./(j*w*C)./(R+j*w*L+1./(j*w*C)); % MATLAB performs

% an array operation

% Note that we need a "." in front of operators

% to perform array operations

Hdb=20*log10(abs(H)); % calculate the magnitude of

% transfer function in dB

semilogx(f,Hdb,’LineWidth’,2) % plot on a logarithmic x-axis

% with a linewidth of 2

grid on % to plot the grid lines

xlabel(’f (Hz)’) % to place the x-label on the plot

ylabel(’|H(\omega)|_{dB}’) % to place the y-label

title(’Transfer Function Example’) % to place a title on the graph

hold on

axis([fmin fmax -40 10]); % define the axes limits

The resulting graph is shown in Fig. 3.11. Note that the magnitude of the
transfer function is unity (0 dB) for small frequencies. It is greater than unity
(>0 dB) at around 2 MHz, while it is less than 1 (<0 dB) for frequencies more
than 3 MHz.

3.5 Thévenin Equivalent Circuit

A purely resistive linear circuit composed of any number of voltage sources,
current sources and resistances with the terminals A and B as in Fig. 3.12(a)
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−35
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(ω

)|
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Transfer Function Example

Figure 3.11: Magnitude of the transfer function in dB scale

can be modelled with just two components at the same terminals: A voltage
source, vth and a series resistance, Req as shown in Fig. 3.12(b). This simple
model is called the Thévenin equivalent circuit, named after the French engi-
neer Léon Charles Thévenin (1857–1926). Since the circuit is linear, its V − I

+
−

+
−Vth

A

B

A

B

(a) (b)

Req

Figure 3.12: Thévenin equivalent circuit

characteristics is a straight line. Thévenin’s theorem basically states that the
straight line can be modelled with just two parameters: Its slope (Req) and its
intersection on the voltage axis (vth).

Thévenin equivalent circuit of a black-box composed of any number
of resistors/voltage and current sources can be found using the following
procedure:

1. Find the voltage between the terminals A and B while those terminals
are open-circuited to determine vth.

2. Kill the voltage and current sources within the black-box: Short-
circuit the voltage sources and open-circuit the current sources. Find
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the resistance between the terminals A and B to determine Req.

Example 9

Consider the circuit given in Fig. 3.13(a). Let us find the Thévenin equivalent
of the circuit inside the dashed box. Applying the procedure:

+
−

+
−

A

B

A

B

(a)

56

5633
39

20V 1A
+
−

A

B
33

39

20V 1A

A

B
33

39

(c) (d)

(b)

17.8

27V

vth

+
vth

-

Req

Req

Figure 3.13: Example for Thévenin equivalent circuit

1. Using nodal analysis, we find the open-circuit voltage at terminals A-B
with 56 Ω removed (Fig. 3.13(b)):

v

33
+

v − 20

39
= 1 or vth = 27V

2. Kill the sources as in Fig. 3.13(c). Find the resistance between the termi-
nals A and B (also with 56 Ω removed): Req = 33 ∥ 39 = 33·39/(33+39) =
17.8Ω.

The Thévenin equivalent circuit is shown in Fig. 3.13(d).

3.5.1 Thévenin equivalent circuit for RLC networks with
sinusoidal excitation

Thévenin’s theorem is applicable to linear networks containing any number of
resistances, capacitors and inductors as long as the sources are sinusoidal at the
same frequency. In this case, the procedure is slightly modified.

For RLC networks with sinusoidal excitation, the Thévenin equivalent
circuit is found by

1. Find the voltage phasor between the terminals A and B while nothing
is connected to those terminals to determine the phasor Vth(ω).
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2. Kill the voltage and current sources within the black-box: Short-
circuit the voltage sources and open-circuit the current sources. Find
the impedance between the terminals A and B to determine Zeq(ω).

Example 10

Consider the RLC circuit given in Fig. 3.14(a). Since the excitation is sinusoidal,
we can find the Thévenin equivalent circuit: Applying the procedure:

A

B

A

B

(a)

(c) (d)

(b)

+
R
C L RL

Acos(ωt)

A

B

+
R
C L

A

B

+
R
C L

RL

A

A

+

Vth

+

Vth

Zeq Zeq

Figure 3.14: RLC circuit example for Thévenin equivalent circuit

1. Using nodal analysis, we find the open-circuit voltage phasor at terminals
A-B with RL removed (Fig. 3.14(b)):

V

jωL
+

V

1/(jωC)
+

V −A

R
= 0 or Vth(ω) =

jωL

R− ω2RLC + jωL
A

2. Kill the voltage source phasor as in Fig. 3.14(c). Find the impedance
between the terminals A and B (also with RL removed):

Zeq(ω) =
jωRL

R− ω2RLC + jωL

The Thévenin equivalent circuit is shown in Fig. 3.14(d).

3.6 Norton Equivalent Circuit

Dual of the Thévenin equivalent circuit is the Norton equivalent circuit, named
after American engineer Edward Lawry Norton (1898–1983). In this case, the
straight line in V − I characteristics is modelled by its slope and its intersection
with the I axis. The equivalent model consists of a current source, iN and a
parallel resistance Req.
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The procedure to find the Norton equivalent circuit of a black-box com-
posed of any number of resistors/voltage and current sources is:

1. Find the current flowing between the terminals A and B while those
terminals are short-circuited to determine iN .

2. Kill the voltage and current sources within the black-box: Short-
circuit the voltage sources and open-circuit the current sources. Find
the resistance between the terminals A and B to determine Req.

Clearly, for the same black-box Req is the same value for Thévenin and
Norton equivalent circuits, because they are found in the same way. Since they
represent the same straight line we also have vth = ReqiN .

Example 11

Consider the same circuit example of Thévenin equivalent circuit in Fig. 3.15(a).
Norton equivalent circuit is found by:

+
−

A

B

A

B

(a)

56

5633
39

20V 1A
+
−

A

B
33

39

20V 1A

A

B
33

39

(c) (d)

(b)

17.8
iN

1.51A

iN

Req Req

Figure 3.15: Finding the Norton equivalent circuit

1. Using nodal analysis, we find the short-circuit current between the termi-
nals A-B (Fig. 3.15(b)):

iN = 1 +
20

39
= 1.51A

2. Kill the sources as in Fig. 3.15(c). Find the resistance between the termi-
nals A and B (with 56 Ω removed): Req = 33 ∥ 39 = 33 · 39/(33 + 39) =
17.8.

The Norton equivalent circuit is shown in Fig. 3.15(d). For this example, finding
the Norton equivalent circuit was simpler than finding the Thévenin equivalent.
If there are parallel elements across the terminals A and B, Norton equivalent
circuit should be preferred, since it gets rid of those elements when the terminals
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are shorted. On the other hand, if there are series elements at the terminals
A or B, Thévenin should be preferred. The series elements will be eliminated
when the terminals are open-circuited.

3.6.1 Norton equivalent circuit for RLC networks with si-
nusoidal excitation

Norton method is also applicable to linear RLC networks with sinusoidal
excitation. The procedure is:

1. Find the short-circuit current phasor between the terminals A and B
to determine the phasor IN (ω).

2. Kill the voltage and current sources within the black-box: Short-
circuit the voltage sources and open-circuit the current sources. Find
the impedance between the terminals A and B to determine Zeq(ω).

Example 12

Refer to the RLC circuit given in Fig. 3.16(a) considered earlier. We can find
the Norton equivalent circuit as

A

B

A

B

(a)

(c) (d)

(b)

+
R
C L RL

Acos(ωt)

A

B

+
R
C L

A

B

+
R
C L

RL

A

A

IN

IN

Zeq Zeq

Figure 3.16: Finding the Norton equivalent circuit

1. Since C and L are shorted, we find the short-circuit current phasor at
terminals A-B easily (Fig. 3.16(b)):

IN =
A

R

2. Kill the voltage source phasor as in Fig. 3.16(c). Find the impedance
between the terminals A and B (with RL removed):

Zeq(ω) =
jωRL

R− ω2RLC + jωL

The Norton equivalent circuit is shown in Fig. 3.16(d).
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3.6.2 Using Thévenin and Norton equivalent circuits

Thévenin and Norton equivalent circuits are used extensively in circuit analysis.
These circuits provide a very efficient way to simplify the circuit to be analyzed.
Whenever a piece of linear circuit is connected to another circuit through two
terminals, the equivalent circuit analysis is often the simplest way to understand
how the latter is affected. Consider the circuit in Fig. 3.17. As far as Circuit
2 is concerned, every effect of the first circuit is summarized by its equivalent
circuit at the interconnection terminals. Once Thévenin equivalent circuit is

Figure 3.17: (a) Two circuit pieces connected to each other by means of two
terminals, (b) Thévenin equivalent of Circuit 1.

obtained, Circuit 1 can be replaced by its equivalent as in Fig. 3.18 and Circuit
2 can be analyzed.

Figure 3.18: Thévenin equivalent of Circuit 1 connected to Circuit 2.

Thévenin and Norton equivalent circuits are equivalent. In other words,
open circuit voltage of Norton circuit, INZeq, yields Vth, as discussed above.
Hence, Zeq can also be obtained from Vth and IN :

Zeq(ω) =
Vth

IN
(3.47)

Example 13

Consider the circuit in Fig. 3.19. Voltage across 2.7 kΩ resistor can be found in
many different ways.
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One of the most effective ways of solving such problems is depicted in
Fig. 3.20. First, the Thévenin equivalent of a part of the circuit, which contains
the battery, is evaluated. Note that the equivalent voltage is the open circuit
voltage across 1.8 kΩ resistor and the equivalent resistor is 1.2K∥1.8K. This
equivalent circuit is connected to the remaining part and a Norton circuit is
evaluated. To do this we disconnect the part of the circuit at the dotted line

1.2K

1.8K

2.2K 3.3K 1.5K

1K 2.7K
1mA

12V

+

Figure 3.19: Example showing the use of Thévenin and Norton equivalent cir-
cuits.

and short it. The short circuit current is the equivalent current and the equiva-
lent resistor is 0.72K+2.2K. In third step, we notice that the equivalent current
and 1 mA current source are in parallel. Combining them in a single source
of 3.47 mA, we convert the Norton circuit to its Thévenin equivalent. After
another Thévenin equivalent conversion, output voltage is obtained as 0.75 V.

1.2K

1.8K

2.2K 3.3K 1.5K

1K 2.7K
1mA

12V

+

Step 1:

1.2K

1.8K12V

+ +
7.2V

0.72K

2.2K 3.3K 1.5K

1K 2.7K
1mA

+

Step 2:

0.72K

7.2V
+

7.2V

0.72K 2.2K

2.92K

2.47mA

3.3K 1.5K

1K 2.7K
1mA

2.92K
2.47mA

Step 3:

1mA

2.92K
2.47mA

+
10.1V

2.92K

3.3K 1.5K

1K 2.7K

Step 4:

+

10.1V

2.92K 3.3K

1K
+

10.1V

2.92K

+
1.4V

0.861K

1.5K

2.7K

+
1.4V

0.861K

+

0.75V

1.26KStep 5:

Figure 3.20: Analysis of circuits using equivalent circuits.
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3.7 Superposition principle

Superposition principle is another very useful tool that can be used in the so-
lution of linear circuits. If a circuit has more than one source, the effect of
each source can be determined independently, and their responses can be added
up to give the overall response. This is a direct result of linearity. For cir-
cuits containing an initial value, the initial value should also be considered as a
source.

The procedure for the superposition principle can be summarized as
follows:

1. Kill all sources and initial value except one of them (Killing means that
the voltage sources are short-circuited, the current sources are open-
circuited and the initial value is zeroed). Find the desired response
using an appropriate method.

2. Repeat step 1 for all sources and the initial value one-by-one.

3. Add the resulting responses to find the overall response.

Example 14

Refer to the resistive circuit depicted in Fig. 3.21(a). Use the superposition
principle to find the voltage vA(t).

(a)

(c) (d)

(b)

R1

R2

R3

+
−v1(t) R4

i2(t)

vA
R1

R2

R3

+
−v1(t) R4

vA

R1

R2

R3

R4
i2(t)

vA

+
− R4

vA

Reqvth(t)

Figure 3.21: Example to use the superposition principle

Solution

1. Kill the current source as shown in Fig. 3.21(b). Find the Thévenin equiv-
alent circuit of the circuit in the dashed box. We find vth using the voltage
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divider formula (Eq. 2.30) and Rth is found by parallel and series resistor
combination formulas:

vth(t) =
R2

R1 +R2
v1(t) and Req =

R1R2

R1 +R2
+R3

vA1(t) for the voltage source is found from the voltage divider in Fig. 3.21(c):

vA1(t) =
R4

Req +R4
vth(t) =

R4

Req +R4

R2

R1 +R2
v1(t)

2. Kill the voltage source as in Fig. 3.21(d). We find the total resistance
across the current source, RT , and hence the corresponding vA2(t) as

RT = Req ∥ R4 =
ReqR4

Req +R4
and vA2(t) = −RT i2(t)

3. The total vA(t) is found by adding the two results:

vA(t) = vA1 + vA2 =
R4

Req +R4

R2

R1 +R2
v1(t)−RT i2(t)

As an exercise, solve the same circuit, using nodal analysis. As a third alterna-
tive, you can use Norton equivalent circuit for the part in dashed lines to get
two current sources and two resistors in parallel which are easily combined.

Example 15

Consider the first-order circuit with two sources and with an initial value given in
Fig. 3.22(a). Find the capacitor voltage, vC(t) using the superposition principle.

+
12V

1K

3mA

3K

+
vC(0)=5V

5µF +
12V

1K 3K

+

5µF

vC(0)=0

(a) (b)

3mA
+

5µF

1K 3K 1K 3K

+

5µF

vC(0)=5V

(d)(c)

vC(0)=0

Figure 3.22: Another example to use the superposition principle
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Solution

We use the superposition principle with two sources and one initial condition.

1. Kill the current source and the initial condition as shown in Fig. 3.22(b).
The final value of the capacitor voltage is vf=−12 V. The time constant
is τ=(5µ)(1K+3K)=20 ms. The solution for this case is

vc(t) = −12 + (0− (−12))e−t/20m

2. Kill the voltage source and the initial condition as depicted in Fig. 3.22(c).
The final value of the capacitor voltage is determined by the 3 mA current
flowing in 1K resistor: vf=3 V. The time constant, τ , remains the same.
The corresponding solution is

vc(t) = 3 + (0− 3)e−t/20m

3. Kill the voltage source and current source as shown in Fig. 3.22(d). The
final value of the capacitor voltage is zero. The time constant is the same.
Hence we have

vc(t) = 0 + (5− 0)e−t/20m

4. We add the three equations above to find the requested solution:

vc(t) = −9 + 14e−t/20m

Example 16

Consider the circuit in Fig. 3.23(a) driven by sinusoidal sources. The two sources
are at two different frequencies, ω1 = 103/3 and ω2 = 103: v1(t) = 2 cos(103/3t+
π/6) and i2(t) = 5 cos(103 − π/4). Find the steady-state value of the resistor
current, i3(t) using the superposition principle.

2µ

0.8K

3K
+

v1 i2
i3

0.8K

3K
+ i3

0.8K

3K
i3

(a) (b)

(c)

2ejπ/4

ω1 circuit

1/(jω1C)

ω2 circuit

1/(jω2C)
5e-jπ/4

mA

V1

I2

R1
C

R2 R2R1

R1 R2

Figure 3.23: Phasor example using the superposition principle
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Solution

Since the sources are sinusoidal and we need the steady-state solution, we can
use phasors.

1. Kill the current source and replace the circuit with phasor equivalents at
ω1 = 103/3 as depicted in Fig. 3.23(b). We find the resistor voltage using
the voltage divider formula. Then the current is found:

I3 = V1
R2 ∥ (1/jω1C)

R1 + (R2 ∥ (1/jω1C)

1

R2
= 0.485ej0.125 mA

2. Kill the voltage source and replace the circuit with phasor equivalents at
ω2 = 103 as depicted in Fig. 3.23(c). We find the resistor current using
the current divider formula.

I3 = I2
R1 ∥ (1/jω2C)

R2 + (R1 ∥ (1/jω2C)
= 0.653e−j1.687 mA

3. We convert the phasor to time domain equivalents and add them to find
the steady-state solution of the resistor current

i3(t) = 0.485 cos(103/3t+ 0.125) + 0.653 cos(103 − 1.687)

3.8 Amplifier types

Since the voltage and current are the two independent variables of circuits, we
can have four possible amplifiers:

1. Voltage amplifier: It amplifies the input voltage to generate an output
voltage as shown in Fig. 3.24(a). An ideal voltage amplifier has an infinite
input impedance and a zero output impedance. A (a unitless quantity) is
the voltage gain of the amplifier.

2. Transimpedance amplifier: It amplifies the input current to generate an
output voltage (Fig. 3.24(b)). An ideal transimpedance amplifier has a
zero input impedance and a zero output impedance. Rf with the unit of
Ω is known as the transimpedance of the amplifier.

3. Transconductance amplifier: It amplifies the input voltage to generate an
output current (Fig. 3.24(c)). An ideal transconductance amplifier has an
infinite input impedance and an infinite output impedance. Gf (with the
unit of Siemens, S) is known as the transconductance of the amplifier.

4. Current amplifier: It amplifies the input current to generate an output cur-
rent (Fig. 3.24(d)). An ideal current amplifier has a zero input impedance
and an infinite output impedance. B, a unitless quantity, is the current
gain of the amplifier.
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Figure 3.24: (a) Voltage amplifier, (b) transimpedance amplifier, (c) transcon-
ductance amplifier, and (d) current amplifier.

3.9 Operational amplifiers

Operational amplifiers (OPAMP) are versatile building blocks [7] very frequently
used in electronic circuits. They can be used to obtain a large variety of func-
tions. The symbol of an OPAMP is shown in Fig. 3.25. v1 and v2 denotes the
voltages at + and − inputs of the OPAMP. +VC and −VC represent the positive
and negative supply voltages.

−

+

vo

(a) (b)

v1

v2

+VC

-VC

v1

v2

+
−

vo

+

-
A(v1-v2)

Figure 3.25: (a) OPAMP symbol, (b) an ideal OPAMP equivalent circuit

It is important to introduce the ideal OPAMP concept, because quite often
we are allowed to use the ideal model. The impedance between the two inputs
and the voltage gain of an ideal OPAMP are both infinite (A → ∞). The infinite
input impedance means that there is no current flowing into the OPAMP. The
series output impedance of an ideal OPAMP is zero. The equivalent circuit of
an ideal OPAMP is shown in Fig. 3.25(b).

In the ideal OPAMP equivalent circuit, there is an output voltage source
with the value of A(v1−v2). Such a source is called a controlled voltage source,
because its value is determined by some parameter in the circuit, v1− v2 in this
case.

All real OPAMPs have a maximum, Vmax, and minimum, Vmin voltage limit
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at its output. Typically, Vmax is slightly smaller than the positive supply voltage
+VC , and Vmin is slightly greater then the negative supply voltage −VC .

We can express the characteristics of a real OPAMP as follows:

vo =


A(v1 − v2) if Vmin

A ≤ vin1 − vin2 ≤ Vmax

A

Vmax if v1 − v2 > Vmax

A

Vmin if v1 − v2 < Vmin

A

(3.48)

Typically, A is a large number in the order of 105 or 106. This implies that
as long as Vmin/A ≤ v1−v2 ≤ Vmax/A is satisfied v1−v2 is a very small number.
Hence we can write

v1 ≈ v2 if Vmin ≤ vo ≤ Vmax (3.49)

This approximation simplifies the solution of most OPAMP circuits. In the
solution of OPAMP circuits, the output node vo should be considered as a
voltage source, which may provide the needed current. It is fair to assume that
there is no current going into the OPAMP at the pins v1 and v2.

3.9.1 Inverting amplifier

Consider the inverting voltage amplifier configuration shown in Fig. 3.26(a).
We can analyze this circuit assuming Vmin ≤ vo ≤ Vmax. In this case we have

−

+

R1

R2

vo

(a) (b)

−

+

R1

R2

v1

v2

v1

v2
vin

R3 R3

vo

vin

Rin

Rin

Figure 3.26: (a) Inverting amplifier, (b) Non-inverting amplifier

v1 ≈ v2. Since there is no current through R3 we have v1 = 0. Hence v2 = 0
also. All the current through R1 must flow through R2. We determine the
voltage gain, vo/vin, as

vin − v2
R1

=
v2 − v0
R2

or
vo
vin

≈ −R2

R1
(3.50)

A negative gain value means that the polarity of the output voltage is the
inverse of the input voltage. The ratio of the resistors R2 and R1 determine
the gain value. R3 has no effect on the gain expression. The input impedance,
Rin, of the amplifier is equal to R1, since v2 is at ground potential. For audio
amplifiers, R1 is chosen typically in 1kΩ to 100 kΩ range. Even though R3 is
not in the gain expression, it is recommended that R3 is chosen equal to the
parallel combination of R1 and R2 (R1R2/(R1 +R2)) to assure symmetry.
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Note that in OPAMP amplifier circuits we provide feedback always to − in-
put of OPAMP. This type of feedback is called negative feedback. If we connect
the feedback resistor to the + input of the OPAMP, we have a positive feedback.
With a positive feedback, the output voltage is not stable and can not remain
within the range Vmin ≤ vo ≤ Vmax: It is either Vmax or Vmin.

3.9.2 Non-inverting amplifier

Now, refer to the non-inverting voltage amplifier shown in Fig. 3.26(b). Again,
we assume Vmin ≤ vo ≤ Vmax. Hence we have v1 ≈ v2. Since there is no current
through R3 we have v1 = vin. Hence v2 ≈ vin also. All the current through R1

must flow through R2. We find the voltage gain, vo/vin, as

v2
R1

=
vo − v2
R2

or A =
vo
vin

≈ 1 +
R2

R1
(3.51)

The input impedance, Rin, of this amplifier is very high (infinity for an ideal
OPAMP), since no current flows through R3. Similar to the inverting amplifier,
the value of R1 should be chosen in the range 1 kΩ to 100 kΩ.

If we choose R2 = 0 and/or R1 = ∞, then the gain becomes one. Such a
circuit is called unity gain amplifier or voltage follower, and it is commonly used
as a buffer. Although it does not provide any voltage gain to the input signal,
it is used to transfer the input voltage intact to the output while altering the
impedance that appears at the terminals of vin to the low output impedance of
OPAMP. This can provide a large power gain, because the voltage at the source
can now be applied to a relatively low impedance load.

3.9.3 Summing amplifier

OPAMPs can be used to add two or more signals. A schematic diagram of a
summing amplifier is depicted in Fig. 3.27(a). We assume Vmin ≤ vo ≤ Vmax,
and use v1 ≈ v2. Since there is no current in R4, there is zero voltage across it.
Hence v1 = 0. Writing KCL at node v2:

−

+

R1

R2

vo

(a) (b)

−

+
R1

R2v1

v2

v1

v2

R3

vovin1

vin2

R4

vin1

vin2

R3

R4

Rin1

Rin2

Rin2

Rin1

Figure 3.27: (a) Summing amplifier, (b) Difference amplifier

v2 − vin1
R1

+
v2 − vin2

R2
+

v2 − vo
R3

= 0
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Since v2 ≈ v1 = 0, we find

vo = −
(
R3

R1
vin1 +

R3

R2
vin2

)
(3.52)

If R1 = R2 = R3, we get the sum of input signals with inverted polarity:
vo = −(vin1 + vin2).

The input impedances are given by Rin1 = R1 and Rin2 = R2, since v2=0.

Exercise

Design an OPAMP circuit to add four signals (with inverted polarity).

3.9.4 Difference amplifier

Referring to the difference amplifier shown in Fig. 3.27(b), we assume again
Vmin ≤ vo ≤ Vmax and v1 ≈ v2. Using the voltage divider relation, we write

v1 =
R2

R1 +R2
vin1 and v2 =

R4

R3 +R4
vin2 +

R3

R3 +R4
vo

In the second equation, we used the superposition principle for signals vin2 and
vo. Since v1 ≈ v2, we get

vo =
R2

R1 +R2

R3 +R4

R3
vin1 −

R4

R3
vin2 (3.53)

The input impedances are Rin1 = R1 + R2 and Rin2 = R3 (if vin1 = 0). Note
that Rin2 depends on vin1, as v2 is determined by vin1.

Note that if R3=R1+R2, and R4=R2+R2
2/R1, we have

vo =
R2

R1
(vin1 − vin2) (3.54)

resulting in a difference amplifier with a gain ofR2/R1 and equal input impedances
of Rin1=Rin2=R1 +R2.

Example 17

Design a circuit with the transfer characteristics vo = 5vin + 3.

Solution

Use a difference amplifier and choose vin1 = vin, R1 = R2, R4/R3 = 9 and
vin2 = −1/3V.

3.9.5 Transimpedance amplifier

The circuit shown in Fig. 3.28 is a transimpedance amplifier (see page 104)
with a current input, iin, and a voltage output, vo. If the output voltage is not
saturated, we have v1 = v2 = 0. Hence, the input impedance of this amplifier
is zero as ideally needed in a transimpedance amplifier. The output voltage is
determined by the feedback resistance, Rf : vo = −Rf iin. Therefore, −Rf is
the transimpedance of this amplifier.
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Rf

iin

vo
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Figure 3.28: Transimpedance amplifier

3.9.6 Current source

Consider to OPAMP circuit shown in Fig. 3.29. Let us find the current IL with
the condition R4 = R1R3/R2.

−

+

R1 R2

R3
R4

IL

+

VR

v1

v2

vo

RL

Figure 3.29: Current source

Using the voltage divider relation, we can find the voltage v2 in terms of vo:

v2 =
R1

R1 +R2
vo (3.55)

Using the node equation at node v1;

v1 − VR

R4
+

v1 − vo
R3

+ IL = 0 (3.56)

If vo is not saturated, we have v1 = v2. Combining these equations, we find[
R2

R1 +R2

(
1

R3
+

1

R4

)
− 1

R3

]
vo −

VR

R4
+ IL = 0 (3.57)

With the condition R4 = R1R3/R2, the term inside the square brackets van-
ishes, and we find

IL =
VR

R4
(3.58)

IL is independent of RL, so the resulting circuit acts like a current source.
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3.9.7 Integrator

An OPAMP can be used to build an integrator as depicted in Fig. 3.30(a). We
observe that v1 = 0, since there is no current in R2. The current in R1 is equal

−

+

R1

vo

(a) (b)

−

+

R1

R2
v1

v2

v1

v2

vo

C

R2

C
vin vin

vC

vC

+

+

Figure 3.30: (a) Integrator, (b) Differentiator

to the current in C:

vin − v2
R1

= C
dvC
dt

= C
d(v2 − vo)

dt

If the output voltage, vo, is not saturated (Vmin ≤ vo ≤ Vmax), we can use
v2 ≈ v1 = 0. We integrate both sides of the equation above from 0 to t to get

v0(t) = vo(0)−
1

R1C

∫ t

0

vin(τ)dτ (3.59)

where vo(0) is the output voltage at t = 0.

Example 18

Assume that R1 = 1K, C = 10µF, vo(0) = 3V and vin is a 5 V pulse waveform
as shown in Fig. 3.31(a). We find the output voltage as plotted in Fig. 3.31(b).

(a) (b)

5V

2 6 t (ms)

vin

2 6 t (ms)

vo

3V

1V

Figure 3.31: (a) Input signal, vin, of the integrator, (b) Output signal, vo, of
the integrator

3.9.8 Differentiator

A differentiator is built from an OPAMP as drawn in Fig. 3.30(b). If the output
is not saturated, we have v2 = 0 since v1 = 0. The current in C is equal to the
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current in R1:

C
d(vin − v2)

dt
= C

dvin
dt

=
v2 − vo
R1

= − vo
R1

Hence

v0 = −R1C
dvin
dt

(3.60)

3.9.9 First-order low-pass-filter (LPF)

A low-pass-filter passes the signals with frequencies less than a predetermined
value, but it attenuates signals with frequencies higher than that value. It is
possible to build a first-order low-pass-filter using an OPAMP by modifying
the inverting amplifier. Refer to Fig. 3.32(a). For analysis, we use phasors

−

+

R1

R2

vo

(a) (b)

−

+
R1

R2

v1

v2

v1

v2

vin

R3

vo

vin

C

C1

C2

v3

Figure 3.32: (a) Inverting first-order low-pass-filter amplifier, (b) Non-inverting
second-order low-pass-filter amplifier

(capital letters) assuming that the input signals are sinusoidal. We know that
V2 ≈ V1 = 0. Hence, we write

Vin

R1
=

−Vo

R2
− VojωC

Therefore, the transfer function is given by

H(ω) =
Vo(ω)

Vin(ω)
= −R2

R1

1

1 + jωR2C
(3.61)

When ωR2C = 1, the magnitude of low-pass-filter term becomes 1/
√
2. This

frequency,

ω0 =
1

R2C
or f0 =

1

2πR2C
(3.62)

is known as the corner frequency or cutoff frequency. In decibels the magnitude
is 20 log10(1/

√
2) = −3 dB.

The magnitude of the transfer function in decibels is∣∣∣∣ V0

Vin

∣∣∣∣
dB

= 20 log10

(
R2

R1

)
− 10 log10(1 + (ω/ω0)

2) (3.63)

The first term is the dB gain of the inverting amplifier. The second term is the
low-pass-filter term. We plot this transfer function in Fig. 3.33 for R2 = 1K
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Figure 3.33: Frequency response of first and second-order low-pass-filters

and C = 0.159µF. For low frequencies when ω ≪ ω0, the low-pass-filter term
approaches to 1 (20 log10(1) = 0 dB). On the other hand, at frequencies much
higher than the corner frequency, ω ≫ w0, we can assume that 1 + j(ω/ω0) ≈
jω/ω0. So the magnitude of low-pass-filter term in decibels is∣∣∣∣ V0

Vin

∣∣∣∣
dB

≈ 20 log10

(
R2

R1

)
− 20 log10(ω/ω0) = 20 log10

(
R2

R1

)
− 20 log10(f/f0)

(3.64)
For f = 10f0, the last term is -20 dB. For f = 100f0, the last term becomes
-40 dB. Clearly, every decade (factor of 10) increase in frequency causes an
additional loss of 20 dB. We express this asymptotic behavior with a slope of
−20 dB/decade, very convenient notation for logarithmic plots like the graph in
Fig. 3.33. The slope can also be expressed in terms of octaves. One octave is a
factor of two. For f = 2f0, the low-pass-filter term is −6 dB. Hence, the slope is
−6 dB/octave. In Fig. 3.32 the asymptotic line with the slope −20 dB/decade
(or −6 dB/octave) is shown as a dashed line.

3.9.10 Second-order low-pass-filter

A second-order low-pass-filter can be obtained using the circuit in Fig. 3.32(b).
We perform nodal analysis in phasor domain as follows:

V3 − Vin

R1
+

V3 − V1

R2
+ (V3 − Vo)jωC2 = 0

and
V3 − V1

R2
= V1jωC1
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Since V1 ≈ V2 = Vo, we find the transfer function as

Vo

Vin
=

1

1 + jω(R1 +R2)C1 − ω2R1R2C1C2
(3.65)

We will show in p. 227 that the shape of the response becomes desirable if

(R1 +R2)
2C1 = 2R1R2C2 (3.66)

Fig. 3.33 also shows the magnitude of the transfer function for this filter for
R1 = R2 = 1K and C1 = C2 = 0.159µF. It has a higher slope (−40 dB/decade)
above the corner frequency.

3.10 Microphone

Microphone is a device that converts sound into an electrical signal. Sometimes,
it is abbreviated as mike. Many different types of microphones are available.

� Dynamic microphone: The diaphragm of the microphone is attached to a
small movable induction coil, which is positioned in the magnetic field of
a permanent magnet. When the sound wave moves the diaphragm, the
coil moves in the magnetic field, producing a varying current in the coil
through electromagnetic induction. This type of microphone has a low
electrical impedance.

� Crystal or piezoelectric microphone: The diaphragm of the microphone
applies a pressure to a piezoelectric crystal, which creates an electrical
voltage proportional to the applied pressure. This type of of microphone
has a high electrical impedance. They are commonly used in electrical
guitars, directly contacting the vibrating surfaces.

� Condenser microphone: The basic condenser microphone is a parallel plate
capacitor with one of the plates made from a very thin diaphragm (typi-
cally metallized mylar film) while the other one is a thick metal plate. A
cross-section of this type of microphone is shown in Fig. 3.34 along with
its equivalent circuit.

perforated

polyethylene
diaphragm

insulating
thin
polyethylene
ring spacer

protective
grid

aluminum
ring
spacer

metalized

aluminum
grid

Co

+

-

Vdc

R

mechanical structure equivalent circuit
do

V(t)

very large

area A

Figure 3.34: Condenser microphone and its equivalent circuit with a bias volt-
age.
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Basic principle of operation of a condenser microphone is simple. When
there is no sound, two parallel plates, the diaphragm and the back plate,
form a capacitance, Co. Its value is given by

Co =
ϵoA

do
(3.67)

where ϵo is the permittivity of the free space given by 8.854× 10−12 F/m.
A is the area of the plates and do is the spacing of the plates. These
microphones are used with circuits like the one shown in Fig. 3.34. Co is
charged to a voltage of Vdc through a very large resistor R. From Eq. 2.38
on page 39, the electric charge, Q, between the plates is

Q = CoVdc (3.68)

When there is sound incident on the thin diaphragm, sound pressure forces
the diaphragm to vibrate back and forth. Suppose that the spacing is large
enough so that the electrostatic attraction force between the capacitor
plates is negligible compared to the force due to the sound pressure. With
that assumption, the spacing of the capacitor plates varies linearly as a
function of time: d(t) = do ± ∆(t), where ∆(t) is proportional to the
sound signal amplitude. Hence, the value of the capacitor becomes also a
function of time

C(t) =
ϵoA

d(t)
=

ϵoA

do ±∆(t)
=

Codo
do ±∆(t)

(3.69)

Since the resistor R has a large value, the total charge Q on the capacitor
remains the same. Therefore, the voltage of the capacitor must be a
function of time:

V (t) =
Q

C(t)
=

CoVdc

Codo
(do ±∆(t)) = Vdc

(
1± ∆(t)

do

)
(3.70)

The sound is thus converted to the electrical signal Vdc∆(t)/do in a lin-
ear manner. For ordinary sound levels, the variation in the membrane
displacement |∆(t)|max is a small fraction of the gap, do. Note that the
sensitivity of a microphone depends on the size of do: smaller do is, more
sensitive the microphone becomes. To preserve linearity, the electrostatic
force between the plates should be negligible, hence the capacitor plate
separation should not be very small. In most commercial microphones, a
compromise between these two requirements is found at about do = 25 µm.
The expression for V (t) in Eq. 3.70 tells that there is a voltage source
Vdc∆(t)/do additive to the capacitor (i.e. in series with the capacitor).
Fig. 3.34 also shows the overall equivalent circuit.

The microphones must be connected to amplifiers using well-shielded (some-
times double-shielded) cables to prevent hum. Hum is the unwanted low-
frequency sound caused by power-line frequencies (50 or 60 Hz) in audio
systems. Unshielded cables cause power-line frequencies be capacitively
coupled to the sensitive input an amplifier causing an unpleasant noise.

For a microphone with a surface of A = 1 cm2, and a gap of do = 25 µm,
Co is approximately 35 pF. The capacitance of a typical shielded cable
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used in audio work is at least 40 pF/m. If we connect the microphone
to the amplifier by a cable of capacitance 35 pF, the sensitivity will be
nearly halved (see Problem 29). Moreover, the perfectly linear relationship
between the sound level and output voltage will be lost. Therefore, a very
high input impedance and low capacitance buffer amplifier is always used
within the housing of the microphone to isolate the capacitor Co from the
external circuits.

Condenser microphones usually serve the upper end of the market. Very
high precision condenser microphones are made for professional use, and
they are expensive. Furthermore, they are vulnerable against corrosion
and must be protected in outdoor conditions.

� Electret microphone: Microphones used with sound cards of computers
and cellular phones, tie-clip microphones, amateur video camera micro-
phones are all electret type. An electret microphone is a special type of
condenser microphone. In these microphones, a polymer membrane re-
places the vibrating membrane, which is precharged. Polyvinyl fluoride
(PVF) polymers (similar to teflon) have a property of keeping a static
charge for very long periods (like 10 years), once they are appropriately
polarized by a strong electric field. These polymer film membranes are
manufactured very thin, like 25 µm thick, and metal plated (aluminum,
nickel or gold) by a technique called sputtering. The structure and equiv-
alent circuit of an electret microphone is given in Fig. 3.35.

diaphragm

cross sectionfront view

10mm

Co

+

-

equivalent circuit

charged
polymer

V(t)

Figure 3.35: Electret condenser microphone

Since the polymer membrane is charged, we do not have to provide an
external dc supply to make the microphone work. The electric charge
trapped in the membrane, Q, is equivalent to CoVdc in condenser type
microphone. This charge enables the microphone to produce the equiva-
lent electrical signal, in the absence of any external voltage. This type of
microphone also suffers from capacitive output impedance drawback, and
hence a buffer amplifier must be used.

Electret microphones are commercially available as capsules, which con-
tain the microphone, the buffer and internal wiring. The electrical model
of such a microphone and its equivalent circuit in is given in Fig. 3.36.
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Figure 3.36: Buffered electret condenser microphone and its equivalent circuit.

The microphone housing contains the microphone and a field effect tran-
sistor (FET), which is used as a buffer amplifier. The internal wiring is
such that one microphone terminal is connected to the gate of FET, and
the other (which is also connected to the aluminum case of the housing) is
connected to the source of the FET. FET must be provided with a voltage
supply Vdc through a resistor R as shown in the Fig. 3.36 in order to act as
a buffer amplifier. FET is a semiconductor device and acts like a voltage
controlled current source. V (t) is the voltage produced by the microphone
proportional to the sound pressure, and it is the controlling voltage for
the current source. FET converts its voltage input into a current source
output gmV (t), where gm is a parameter of FET, called transconductance.
The terminals of the microphone are these two terminals of the FET. We
will therefore model the microphone output as a current source with a
current output proportional to the voice signal, when appropriately con-
nected to an external circuit.

♦ TRC-11 uses an electret microphone as its audio input.

� Microelectromechanical (MEMS) microphone: It is basically a type of con-
denser microphone built on silicon. The thin diaphragm of the microphone
is manufactured on silicon using MEMS processing technology. Silicon di-
aphragm has holes to equalize the gap pressure with the external pressure.
An integrated buffer amplifier is used for the same reason as condenser
microphones. Modern smart phones have several MEMS microphones.

3.11 Loudspeaker

A loudspeaker is an electro-acoustic transducer [8] that converts electrical energy
into acoustic energy. Unlike electromagnetic energy, acoustic energy requires
a presence of matter in the medium to propagate (acoustic signals doe not
propagate in vacuum). Air is the medium of propagation for audio acoustics,
and the matter that supports the propagation is air. A loudspeaker acts like
a piston and forces air in its vicinity to move at the frequency of the signal
and at an amplitude proportional to the signal amplitude. The structure of an
ordinary loudspeaker is given in Fig. 3.37.

Loudspeakers most commonly have a circular symmetry. The cone section
in Fig. 3.37 is a cone shaped light diaphragm and it simply acts as the piston
head to push the air. It is very lightly supported at the peripheral metal frame
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Figure 3.37: Parts of a loudspeaker

by corrugated suspension, both at top and at bottom. This support allows the
diaphragm to move easily, but up and down only.

We need a motor to drive the piston head. The motor is at the lower part.
Diaphragm is rigidly attached to the drive coil. The motor part consists of
a magnetic circuit, which moves the drive coil up and down when there is a
current flowing in the coil. Motor can be analyzed in two parts. The first one
is the magnetic circuit. The magnetic circuit is shown in Fig. 3.38.

Figure 3.38: Magnetic circuit of a loudspeaker

The source of the magnetic field is the permanent magnet, whose North-
South poles are aligned vertically in the cross section view. A magnetic flux
emanates from the magnet in that direction as well. The function of the yoke
is to concentrate the magnetic flux into the narrow circular air slit. Yoke is
made of a ferromagnetic material like iron, which conducts the magnetic flux as
copper conducts electric current. Thus almost all the flux (small amount of flux
escapes into surrounding air medium) is concentrated in the slit, generating a
circularly symmetric strong magnetic field, B (top view).

Secondly, a circular drive coil is placed in this field. This is shown in Fig. 3.39.
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When a current carrying conductor is placed in a magnetic field, the conductor
experiences a force in a direction perpendicular to both the directions of the
current and the magnetic field. Now since current and magnetic field both lies
on the same plane, the direction of the generated force is perpendicular to that
plane. For given directions of field and current, the magnetic force is in the
direction shown in the figure. The magnitude of this force in Newtons is given
as

Figure 3.39: Current carrying coil in a loudspeaker

F = NIB (3.71)

where I is the current in the coil, B is the magnetic field in Tesla and N is the
number of turns in the coil.

If the current in the coil is sinusoidal, then the force is obviously sinusoidal.
Whatever the signal (current) is, the force generated is proportional to it. There-
fore, we must apply a current, proportional to the voice signal, to the drive coil
of the loudspeaker. The generated magnetic force is then proportional to the
voice and since the coil is rigidly fixed to the cone membrane (piston), the air
in front of speaker is moved accordingly.

Loudspeakers are specified by their input resistance. 4 Ω, 8 Ω and 16 Ω are
standard input resistance values for this type of loudspeakers.

Headphones are a pair of small loudspeakers worn around the head over a
user’s ears. Earphones are a pair of small loudspeakers that plug into the ear
canal.

♦ TRC-11 needs a loudspeaker, headphones or earphones to convert the
electrical energy into sound.
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3.12 Examples

Example 19

Suppose that the OPAMP shown in Fig. 3.40 is ideal (there is no current into
+ or − terminals, and the output of OPAMP acts like a voltage source.). Find
Vout in terms of Vin.

−

+

1K 10K
5K

5K

8K

+0.8v

V1

V2

Vin

Vout

Figure 3.40: Circuit for Example 1.

Solution

Since the circuit does not contain any capacitor or inductor, we do not have a
differential equation. Vout can be expressed in terms of Vin algebraically. We
write KCL at node V1 as

.
V1 − Vin

1K
+

V1

5K
+

V1 − Vout

10K
= 0

or 10(V1 − Vin) + 2V1 + V1 − Vout=0 We can find V2 from the voltage divider
formula

V2 =
5K

5K + 8K
0.8 =

4

13
V

Assume that the output voltage of OPAMP is not saturated and hence it is in
the linear region. From Eq. 3.49, we must have V1 = V2. Combining equations,
we get Vout = −10Vin + 4. We write the solution as

Vout =


−10Vin + 4 for Vmin < −10Vin + 4 < Vmax

Vmax for − 10Vin + 4 > Vmax

Vmin for − 10Vin + 4 < Vmin

Example 20

For the circuit given in Fig. 3.41, assume that the input voltage vin(t) is a step
function, as shown on the right. Assuming Vmin = −15 V and Vmax = 15 V,
find vout(t) for all t > 0.
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−

+

10K

10nF
C

R2

R1

1K

vin

vout

RL1K 1V

vin(t)

t

+vC
-

v1

v2

Figure 3.41: Circuit for Example 2 and 3.

Solution

This is a first-order RC network. Assume that OPAMP output is not saturated.
We can use the time-domain solution method of Section 2.8 on page 46. (We
cannot use the phasor method since the input is not a sinusoid.)

1. We kill the source vin. In this case, vout = 0. Since v2 = v1 = 0, there is
no current in R1. Therefore, the total resistance seen by C is R2 only.

2. The time constant is τ = R2C = 100µs.

3. vout(0
−) = −(R2/R1)vin(0

−) = 0 and vC(0
−) = vC(0

+) = 0V. Hence,
vout(0

+) = 0V.

4. We open-circuit the capacitor and write

vout(∞) = −R2

R1
vin(∞) = −10V

Since v1 = v2 = 0, vC(∞) = vout(∞)− v2(∞) = vout(∞) = −10V

5. Since Vmin = −15 < −10, the OPAMP is not saturated and we write vout
as

vout(t) = −10 + (0− (−10))e−t/τ = −10 + 10e−t/100µ for t > 0

This equation is plotted in Fig. 3.42.

Example 21

For the OPAMP circuit of Fig. 3.41, the input signal is vin(t) = 0.5 cos(2π1000t).
Assuming Vmin = −12 V and Vmax = 12 V, what is vout(t)?

Solution

Assume that the OPAMP output voltage is not saturated. Therefore, the circuit
is linear. Since the input voltage is sinusoidal, we can use phasors. The input
phasor is Vin=0.5. The transfer function is given by

Vout

Vin
= −

R2 ∥ 1
jωC

R1
= −R2

R1

1

1 + jωR2C



3.12. EXAMPLES 120

0 100 200 300 400 500
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

t (µs)

v ou
t(t

) 
(V

)

Figure 3.42: vout(t) as a function of time for Example 20.

Hence, the magnitude ratio is∣∣∣∣Vout

Vin

∣∣∣∣ = R2

R1

1√
1 + (ωR2C)2

=
10√

1 + (2π10310−4)2
= 8.46

and the phase difference is

∠
Vout

Vin
= π − tan−1(ωR2C) = 2.59rad

Therefore, we write

vout(t) = 0.5 · 8.46 cos(2π1000t+ 2.59) = 4.23 cos(2π1000t+ 2.59)

Since 4.23 < 12, our initial assumption of linearity is verified.

Example 22

What is the transfer function, Vout/Vin, of the circuit given in Fig. 3.43, assum-
ing that the input signal is sinusoidal and the OPAMP output is not saturated.

−

+R1 v1

v2

R2

R3

C

Vin
Vout

Figure 3.43: Circuit for Example 4.
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Solution

We use phasors to find the transfer function. From the voltage divider at the
input side, we find

V1 =

1
jωC

1
jωC +R1

Vin ==
1

1 + jωR1C
Vin

R2 is not in the equation since there is no current through it. If the output of
OPAMP is not saturated, we have V1 = V2. Since there is no current through
R3, we have Vout = V2. Therefore, we have

Vout

Vin
=

1

1 + jωR1C

Example 23

What are the Thévenin and Norton equivalent circuits of the circuit given in
Fig. 3.44(a).

vout

+
−

3K 3K

18K 18K 6K

9K

45V

vout

+
−

3K 3K

18K 6K

vout

+
−

3K

6K

vout

+
−

6K

30V

(a) (b)

6K

20V

(c) (d)

3.6K

8V

Figure 3.44: Circuit for Example 5.

Solution

We first find the Thévenin equivalent of 45 V, 9 kΩ and 18 kΩ resistor (inside the
dashed lines): Since 9K∥18K=6K, and 45·18/(18+9)=30 V, we have the equiv-
alent circuit shown in Fig. 3.44(b). One more application gives us the circuit
in Fig. 3.44(c). Finally, we have Req=9K∥6K=3.6K and VTH = 20 · 6K/(6K +
9K) = 8V. We can find the Norton current from IN = VTH/Req=49.4 mA

Example 24

For the circuit in Fig. 3.45, find vout if (a) R2/R1=2 and vin=3 V, (b) R2/R1=4
and vin=3 V, (c) R2/R1=4 and vin=5 V.
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−

+

−

+
vout

vin

R1

R2 R2

R1

+15V+15V

-15V -15V

Figure 3.45: Circuit for Example 6.

Solution

Both amplifiers are inverting amplifier configurations. We also have Vmin =
−15 V and Vmax = 15 V. The gain of one stage is−R2/R1. We have Vmax = 15V
and Vmin = −15V.

(a) vout = (−R2/R1)
2vin = 4 · 3 = 12 V

(b) vout = (−R2/R1)
2vin = 16 · 3 = 48 V! The second OPAMP is saturated.

vout=15 V.
(c) vout = (−R2/R1)

2vin = 16 · 5 = 80 V! Both OPAMPs are saturated.
vout=15 V.

Example 25

Consider the circuit given in Fig. 3.46. Find v3(t).

560

680
65p

0.5µ

13 cos(2π 60 106 t) mA

+

2 cos(2π 28 106t+30o) V

C L
R1 R2

v1(t) i2(t)

v3(t)=?

Figure 3.46: Circuit for Example 7.

Solution

The linear circuit has two sources at two different frequencies. The phasor
approach can be used to find the solution when all excitations are at the same
frequency. Since we have two different frequencies, we can use the superposition
principle to solve the circuit for one excitation at a time:

When the current source, i2(t), is killed (open-circuited), the voltage source,
v1(t), is the only excitation at ω1 = 2π28 ·106. For this frequency, the capacitor
is replaced with 1/jω1C, and inductor is replaced with jω1L. The voltage source
is represented with the phasor V1 = 2∠30o. At this frequency the voltage phasor
V3 is found as

V3 =
2∠30o

560

(
1

560
+

1

680
+ jω1C +

1

jω1L

)−1

= 1.1∠30o
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Since the imaginary part of the expression in parentheses is zero, the angle of
the V3 is the same as the angle of V1. In the time domain, we find

v3(t) = 1.1 cos(2π28 · 106 + 30o)

When the voltage source, v1(t), is killed (short-circuited), the current source,
i2(t), is the driver at ω2 = 2π60 · 106. Hence, the capacitor is replaced with
1/jω2C, and the inductor is replaced with jω2L. The current source is repre-
sented with the phasor I2 = 13 mA. At this frequency, the voltage phasor V3 is
found as

V3 = 13 · 10−3

(
1

560
+

1

680
+ jω2C +

1

jω2L

)−1

= 0.67∠− 80o

In time domain, this is equivalent to v3(t) = 0.67 cos(2π60 · 106 − 80o).
Therefore, the total solution is

v3(t) = 1.1 cos(2π28 · 106 + 30o) + 0.67 cos(2π60 · 106 − 80o)

Example 26

Consider the circuit given in Fig. 3.47(a) with iB(t) = 60 cos(2π103t) and

vA(t) =

{
−5 for t < 0

+10 for t > 0

Find vC(t).

+
C

R1 R2

vC(t)=?

vA(t) iB(t)

1K

2K

3K

1µ

C

vC(t)=?

vA(t) iB(t)3K 1µ 3K 2/3/3K

(a)

(b)

R3

Figure 3.47: (a) Circuit for Example 8, (b) simplified circuit obtained using
Norton equivalent circuits.
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Solution

The linear circuit has two sources, and the superposition principle is applicable.
The voltage source is a step function at t = 0. Since the circuit is first-order,
we can use the method given on page 46 to find vC(t). On the other hand, the
current source is sinusoidal. For this source, the phasor approach can be easily
applied.

To simplify the circuit, we find the Norton equivalent of the vA(t) and R1

as shown on the left-hand side of Fig. 3.47(b). Similarly, the Norton equivalent
of iB(t), R2, and R3 are substituted on the right-hand side.

First, we find vC(t) due to current source on the left, while the current source
on the right is killed. vC(0) is found by open-circuiting C for vA(t) = −5 with
t < 0. We get

vC(0) =
−5

3K
(3K ∥ 3K) = −2.5

vC(∞) is determined by open-circuiting C while vA(t) = +10 with t > 0:

vC(∞) =
+10

3K
(3K ∥ 3K) = 5

The time constant is equal to τ = (1µ)(3K ∥ 3K) = 1.5 ms. Therefore the
solution for this source is

vC(t) =

{
−2.5 for t < 0

5 + (−2.5− 5)e−t/1.5·10−3

for t ≥ 0

We find vC(t) due to the sinusoidal current source on the right, while the
current source on the left is killed. We replace C with 1/jωC with ω = 2π103,
the current source with the phasor 2/3 ·60 = 40 mA. The phasor VC is found as

VC = −40 · 10−3

(
1

3K
+

1

3K
+ jωC

)−1

=
−0.040

0.00632∠84o
= 6.33∠96o

Hence, the total solution is

vC(t) =

{
−2.5 + 6.33 cos(2π103t+ 96o) for t < 0

5− 7.5e−t/1.5·10−3

+ 6.33 cos(2π103t+ 96o) for t ≥ 0

Example 27

Consider the 50 Hz high-voltage three-phase circuit given in Fig. 3.48. We have
Va = 380∠0 kV, Vb = 380∠120o kV, Vc = 380∠240o kV all in rms. Find the
rms line currents, I1, I2, I3. Find the total power delivered to load resistances.

Solution

The rms load currents can be found easily since we know the voltages across
the loads:

Ia =
380K∠0

16K + j1.41K
=

380∠0
16.06∠5.05o

= 23.7∠(−5.05o) A
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+

+

+

Va

Vb

Vc Ic Ia

Ib

I1

I2

I3 15K 16K

14K4H

3H 4.5H

Figure 3.48: Three-phase circuit for Example 9.

Ib =
380K∠1200

14K + j1.26K
=

380∠120o

14.06∠5.13o
= 27.0∠(115o) A

Ic =
380K∠240o

15K + j0.942K
=

380∠240o

15.03∠3.60o
= 25.3∠(236o) A

The rms line currents can be found from KCL at the nodes:

I1 = Ib − Ia = 27.0∠(115o)− 23.7∠(−5.05o) =

= −11.4 + j24.5− 23.6 + j2.08 = −34.9 + j26.6 = 43.9∠143o A

I2 = Ic − Ib = 25.3∠(236o)− 27.0∠(115o) =

= −14.0− j21.1 + 11.4− j24.5 = −2.61− j45.6 = 45.6∠(−93.3o) A

I3 = Ia − Ic = 23.7∠(−5.05o)− 25.3∠(236o) =

= 23.6− j2.08 + 14.0 + j21.1 = 37.6 + j19.0 = 42.1∠26.8o A

The power delivered to loads can be found as

P = |Ia|216K + |Ib|214K + |Ic|215K = 8.95 + 10.2 + 9.6 = 28.8 MW

Example 28

Three OPAMP circuit shown in Fig. 3.49 is known as an instrumentation am-
plifier. Find the output voltage vo in terms of input voltages v1 and v2.

Solution

Assuming that OPAMPs are not saturated, we have v1 = v5 and v2 = v6.
Hence ia = (v5 − v6)/Ra = (v1 − v2)/Ra. Since the same current flows in the
neighboring resistors, we have

v3 − v4 = ia(2R+Ra) =
v1 − v2
Ra

(2R+Ra) =

(
1 +

2R

Ra

)
(v1 − v2)
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Figure 3.49: Instrumentation amplifier.

The OPAMP #3 is a difference amplifier as in Fig. 3.27(b), with all resistors
equal to R. Hence the output voltage is given by

vo =
R

R+R

R+R

R
v4 −

R

R
v3 = v4 − v3 =

(
1 +

2R

Ra

)
(v2 − v1)

The instrumentation amplifier is a symmetrical difference amplifier with infinite
input impedance at both inputs. Moreover, the gain can be set using a single
resistor, Ra.
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3.13 Problems

1. Evaluate the following complex number equations. Find the results in
rectangular and polar format with three significant digits:

(a) (7.82-j10.11)(-2.25-j4.11)

(b) (3.73+j9.32)/(1.28-j2.20)

(c) 3.44∠34o + 2.99∠138o

(d) 1.99 · 10−3∠(−27o)− 8.9 · 10−4∠(−150o)

2. Expand ejθ in the Taylor series, group the real and imaginary parts, and
show that the real series corresponds to the expansion of cos θ and the
imaginary series corresponds to the expansion of sin θ.

3. Show that capacitance is a linear circuit element.

4. Show that if a circuit satisfies the linearity definition for two arbitrary
inputs, it also satisfies the linearity condition for an indefinite number of
inputs.

5. A voltage amplifier input/output characteristics is Vo(t) = AVi(t), where
Vi(t) is the input and Vo(t) is the output voltage, and A is a constant
(gain). Show that this amplifier is a linear circuit component.

6. Design an LPF using a resistor and an inductor. Find the transfer function
for this filter and plot its magnitude with respect to angular frequency.

7. Design an HPF using a resistor and an inductor. Find the transfer function
for this filter and plot its magnitude with respect to angular frequency.

8. Find the impedance of the circuits given in Fig. 3.50 at the specified
frequency. Write the impedance in polar form, i.e., magnitude and phase
(2 significant figures):

Figure 3.50: Circuits for problem 8
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9. The voltage (current) sources in Fig. 3.51 are connected to the circuits in
problem 8. The frequencies of the sources are as given in problem 8. Find
the current through (voltage across) the sources.

Figure 3.51: Sources for problem 9

10. Calculate the current through the capacitor in problem 8(c) and inductor
in problem 8(e) and (f) using nodal analysis when the sources in problem 9
are connected across the circuits.

Figure 3.52: Circuits for problem 17

11. The voltage across and the current through two-element series circuits
are given below. Find the component types and their values with two
significant figure accuracy and in regular value notation (like Ω, K for
resistance; µ, p for capacitance, etc.), for each circuit. Determine the
frequency and angular frequency in each case.

(a) v(t) = 28.3 cos(628t+ 150o) V i(t) = 11.3 cos(628t+ 140o)

(b) v(t) = 5 cos(2π300t− 25o) V i(t) = 8 cos 2π300t+ 5o) mA

(c) v(t) = 10 cos(2π796t−150o) V i(t) = 1.333 cos(2π796t−3π/8) mA

(d) v(t) = 8 cos(106t+ 45o) V i(t) = 8 cos(106t+ 90o) mA

(e) v(t) = 5 cos(2π106t− 160o) V i(t) = 10 cos(2π106t− 75o) mA
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Figure 3.53: (cont.) Circuits for problem 17

12. A series circuit has a resistor R=120 Ω and an inductor L=780 nH. A
voltage of 10 V peak value with a frequency of 25 MHz (zero phase)
is applied across this circuit. Find the current flowing through it and
write down the expression for the time waveform. Find the current, if the
frequency is increased to 50 MHz.

13. A series circuit has R=1 kΩ and C=120 pF. What is the frequency (not
angular frequency) at which the phase difference between the current and
voltage is π/4?

14. A series RC circuit has C=470 pF. Find R if the phase difference between
current and voltage is 30o at 1 kHz.

15. The voltage and current of a two-element series circuit at 500 kHz are
V=3∠45oV and I=1∠120o mA. When the frequency is changed to another
value, f , the phase difference between the voltage and current becomes
30o. Find f .

16. Assume that the voltage and current pairs given in problem 11 are for
two-element parallel circuits. Determine the component types and their
values.

17. Find and draw the Thévenin equivalent of the circuits given in Figs. 3.52
and 3.53. Express the equivalent voltages and impedances in polar form.

18. Convert the equivalent circuits found in problem 17 into Norton equivalent
circuits and draw them.
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Figure 3.54: Circuits for problem 19

19. Find and draw the Norton equivalent of the circuits given in Fig. 3.54.
Express the equivalent currents and impedances in polar form.

Figure 3.55: Circuits for problem 20

20. Find the Veq and Zeq such that the circuit given in Fig. 3.55(a) can be
represented as in (b).

Figure 3.56: Circuits for problem 21

21. Find and draw the Thévenin and Norton equivalents of the circuits in
Fig. 3.56 at DC, 20 MHz, and 40 MHz.

22. This problem illustrates how a unity feedback amplifier is used to avoid
loading effects. Consider the divider circuit in the Fig. 3.57(a). What is
Vout? Assume we want to apply Vout across a 1 kΩ resistor, as shown
in part (b). What is Vout now? Now assume we place a buffer amplifier
between the divider and 1K resistor as in part (c). Find Vout.
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Figure 3.57: Circuits for problem 22

23. Assume there are two signals, V1 and V2. Design a summing amplifier to
produce Vout = 2V1+0.5V2, using (a) two OPAMPs, and (b) one OPAMP.
assuming that OPAMPs are ideal.

Figure 3.58: Circuit for problem 24

24. Make a table indicating what terminals to connect to the input signal
source or the output to get all possible (different) amplification factors for
the circuit in Fig. 3.58. Also, calculate the resulting input impedance and
the possible gains, and include them in the table.

25. Find Vo/Vin in the OPAMP circuits of Figs. 3.59 and 3.60.

26. Find the transfer functions Vo(ω)/Vin(ω) for the circuits given in Figs. 3.61
and 3.62.

27. In the circuits of Fig. 3.61 and 3.62, find the asymptotic behavior of the
transfer function at low frequencies and high frequencies.

28. Find the transfer function of the circuit given in Fig. 3.63. Is there a
frequency at which the gain is zero? Which frequency?

29. Find the voltage output of a condenser microphone of capacitance Co

as a function of diaphragm vibration when a cable of capacitance Cc is
connected at its output.
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Figure 3.59: Circuits for problem 25

Figure 3.60: (cont.) Circuits for problem 25
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Figure 3.61: Circuits for problems 26 and 27

Figure 3.62: (cont.) Circuits for problems 26 and 27

Figure 3.63: Circuit for problem 28



Chapter 4

DIODES and
BIPOLAR JUNCTION
TRANSISTORS

Diodes are important electronic devices used in many applications. Unlike the
devices like resistors, capacitors, and inductors, they are nonlinear devices. In
the first part of this chapter, we explore the characteristics of diodes as a circuit
element. We study the solution of circuits containing diodes. Several important
circuit containing didoes are presented.

As seen in the previous chapter, OPAMPs can be used for low-frequency (or
audio frequency) amplification. At high frequencies, discrete transistors or in-
tegrated circuit amplifiers are used for amplification. At microwave frequencies,
MMICs (monolithic microwave integrated circuits) are preferred for the same
purpose. In the second part of this chapter, we explore the bipolar junction
transistors. After introducing the DC solution of circuits containing a BJT, the
amplification property of the circuit is demonstrated.

4.1 Diodes

A diode is a nonlinear resistor with a symbol shown in Fig. 4.1(a). It carries the
current in one direction but not in the other. An ideal diode is described with
two states: OFF state—it carries no current with a negative voltage across it;
ON state—it has no voltage across it with a positive current through it.

An ideal diode characteristics can be written as

ON state: vD = 0 if iD ≥ 0

OFF state: iD = 0 if vD < 0 (4.1)

In a graphical form, this can be shown as an I − V characteristic as in
Fig. 4.1(b).
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(a) (b)

0.7

-

+
iD iD

vD

vD

(c)

vD

iD

-

+
iD

vD
+V0

(d)

=0.7V

Figure 4.1: (a) Diode symbol and reference directions, (b) I −V characteristics
for an ideal diode, (c) Approximate diode equivalent circuit, (d) I − V charac-
teristics for the diode approximate equivalent circuit

Water flow analogy of a diode

Consider the structure in Fig. 4.2. If water flows from left to right, the flap
moves right, and water is allowed to pass. If water comes from the right, the
flap blocks the flow, and no water flows to the left. This is analogous to a diode.

Figure 4.2: Water flow analogy of a diode

Real diodes

Most of the contemporary diodes are semiconductor devices. They are built by
a junction of p-type and n-type semiconductors called p-n junction diodes. They
are nonlinear resistors, resistance of which depend on the voltage across them.
The I −V characteristic of a semiconductor diode can be well approximated by
an exponential relation:

ID = IS(e
−VD/γ − 1) (4.2)

where ID and VD are the current and voltage of the diode. IS and γ are the
physical constants related to the material and construction of the diode. The
typical I-V characteristic of a silicon p-n junction power diode is given in Fig. 4.3.

VD is defined as the voltage difference between anode and cathode terminals
of the diode. This I−V characteristics shows that the current through a diode is
effectively zero as long as the voltage across it is less than approximately 0.7 volt,
i.e., it can be assumed open circuit. The current increases very quickly when the
voltage exceeds V0 (V0=0.7 V for silicon diodes), hence it behaves like a short
circuit for these larger voltages. The real diodes have a small threshold voltage,
V0, across them when they are in the ON state. So a better approximation for
silicon diodes can be written as follows (see the model shown in Fig. 4.1(c)):

ON state: vD = Vo V if iD ≥ 0

OFF state: iD = 0 if vD < Vo V (4.3)
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Figure 4.3: I − V characteristic of a real p-n junction power diode

where Vo is approximately 0.7 V. I − V graph for this approximation is shown
in Fig. 4.1(d).

Note in Fig. 4.3 that there is a negative voltage threshold for VD, determined
by the breakdown voltage in real diodes, below which the diode starts conducting
again. This breakdown voltage is usually large enough such that the magnitudes
of all prevailing voltages in the circuit are below it, and hence it can be ignored.

4.1.1 Schottky diode

Schottky diode is a diode formed by a junction of a semiconductor with a metal.
It was named after German physicist Walter Schottky (1886–1976). It has a
forward voltage drop of about half that of a p-n junction diode at the same
current level. The maximum allowable reverse voltages of Schottky diodes are
typically less than 50 V, lower compared to p-n junction diodes. They are used
in applications requiring high switching speeds. The symbol of the Schottky
diode is shown in Fig. 4.4.

4.1.2 Solutions of circuits containing diodes

Since diodes are nonlinear devices, the analysis methods described earlier cannot
be used directly. If we approximate a diode using the piecewise linear model,
we can use the methods suitable for linear circuits as described below.

The procedure for the solution of circuits containing one or more diodes
is as follows:

1. Assign ON or OFF state to the diode(s).

2. Replace the diode(s) with the equivalent circuit in that state.

3. Solve the resulting linear circuit

Figure 4.4: Symbol of a Schottky diode.
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4. Check if the condition of the assumed state is satisfied for the diode(s).

5. If not, go to step 1 and change the state of the diode(s).

If it is difficult to estimate the state of the diode, it is better to try the OFF
state first, since it usually results in a simpler circuit. If there are several diodes,
the procedure should be repeated until the conditions of all diodes are satisfied.
The procedure is best understood by the examples given below.

Example 29

(a)

3m

4K

5K 2K

3K
D

3m

4K

5K 2K

3K

(b)

+ -vD

V1

V3V2 3m

4K

5K 2K

3K

(c)

iR iR

+
0.7V

Va

Vb Vc

Figure 4.5: Example 29: A circuit containing a diode

We want to find the current iR in the circuit given in Fig. 4.5 with one diode.
Use the approximate model of the diode in Eq. 4.3. Apply the procedure:

1. Assume that the diode is OFF.

2. Replace the diode with an open-circuit (as in Fig. 4.5(b)).

3. Solve the resulting linear circuit:

� Assign the ground node to the bottom of the circuit.

� The circuit has only one node: V1. (V2 and V3 are not nodes since
they have only two branches.)

� Write KCL for V1:

V1

4K + 5K
+

V1

2K + 3K
− 3mA = 0

4. Solve to find V1=135/14=9.6 V

5. The voltage across the diode is using the voltage divider relations:

vD = V2 − V3 = V1
5K

4K + 5K
− V1

2K

2K + 3K
=

3

2
= 1.5 V

6. Since the diode voltage vD=1.5 V>0.7 V, the OFF condition of Eq. 4.3 is
not satisfied: The diode must be ON.
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7. Substitute the ON model of the diode (as in Fig. 4.5(c)).

8. Solve the resulting circuit to find iR:

� Assign the ground node to the bottom of the circuit.

� The circuit has three nodes: Va, Vb, and Vc.

� Write KCL for Va and Vb. Vc can be written in terms of Vb by KVL:

Va : Va−Vb

4K + Va−Vc

3K − 3mA = 0

Vb :
Vb

5K + Vb−Va

4K + Vc−Va

3K + Vc

2K = 0

Vc : Vc = Vb − 0.7

9. Solve to find Va=9.52 V and Vb=4.78 V.
Hence, iR=(9.52-4.78)/4K=1.19 mA

Example 30

+50V
+ +

5V

4K10K

(a)

D

2µFvC
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+

+
5V

4K10K D

2µFvC

(b)

iR
50V

+ iR

+
+

5V

4K10K D

2µFvC50V
+ iR

(c)

+
+

5V

4K10K D

vC50V
+ iR

(d)

Figure 4.6: Example 30: An RC circuit containing a diode

We want to find the current iR in the circuit given in Fig. 4.6 with one ideal
diode (V0=0). Use the approximate model of the diode in Eq. 4.3. Apply the
procedure:

1. Assume that the diode is OFF.

2. Replace the diode with an open-circuit (as in Fig. 4.6(b)).

3. Solve the resulting linear circuit:

� Assign the ground node to the bottom of the circuit.

� Solve the resulting linear RC circuit using the procedure in Sec-
tion 2.8:
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� Kill the 50 V voltage source. Find the equivalent resistor across
capacitor: Req=10 kΩ.

� The time constant is τ=ReqC=10K×2 µF=20 ms

� The initial value of vC(0) = −20 V. The initial value of iR is found
by substituting a voltage source of −20 V in place of the capacitor:
iR(0) = (50− (−20))/10K = 7.0 mA.

� The final value of vC(∞)=50 V. The final value of iR is found by
substituting an open circuit for the capacitor: iR(∞) = 0

� Write the solution for vC as vC(t) = 50 + (−20− 50)e−t/20m and for
iR as iR(t) = 0 + (7− 0)e−t/20m mA

4. Check that the diode is actually OFF by finding the diode voltage: vD =
vC−5 = 45−70e−t/20m. We see that the diode voltage is negative, vD < 0
(so our assumption of OFF diode is correct), when 70e−t/20m > 45 or when
t < 20 ln(70/45)ms=8.84 ms. For t > 8.84 ms we must assume that the
diode is ON.

5. Substitute a short-circuit for diode and solve the resulting circuit shown
in Fig. 4.6(c).

� Kill both 50 V and 5 V voltage sources. Find the equivalent resistor
across capacitor: Req=10K∥4K=2.86 k.

� The time constant is τ=2.86K×2 µF=5.72 ms

� The initial value of capacitor at the time the diode turns ON is
vC(8.84m) = 50 − 70e−8.84m/20m=5.0 V. The initial value of iR is
found by substituting a voltage source of 5 V in place of the capacitor:
iR(8.84m) = (50− 5)/10K = 4.50 mA.

� The final value of iR is found by open circuiting the capacitor as
in Fig. 4.6(d). iR(∞) = (50 − 5)/(10K + 4K)=3.21 mA. Hence
vC(∞)=50−3.21×10K=17.9 V.

� Write the solution for vC for t >8.84 m as

vC(t) = 17.9 + (5.0− 17.9)e−(t−8.84m)/5.72m

and for iR as

iR(t) = 3.21 + (4.50− 3.21)e−(t−8.84m)/5.72m

6. We check that for t >8.84 m, the diode current (=iR) is positive, so our
assumption of the diode being ON is correct.

A MATLAB code to plot vC and iR is given below. The resulting plot is shown
in Fig. 4.7.

% MATLAB code to draw iR and vC of Example 8

clear all hold off

t1=0:0.01:8.84; % define two separate vectors

t2=8.84:0.01:20; % for two regions

iR1=7*exp(-t1/20); % current for the first region

iR2=3.21+(4.5-3.21)*exp(-(t2-8.84)/5.72); % second region
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vC1=50-70*exp(-t1/20); % voltage for the first region

vC2=17.9+(5-17.9)*exp(-(t2-8.84)/5.72); % second region

[hx,h1,h2]=plotyy([t1 t2],[iR1 iR2],[t1 t2],[vC1 vC2])

% plotyy function draws a graph using left and right axes

grid on xlabel(hx(1),’t (ms)’)

ylabel(hx(1),’i_R (mA)’) % to define the label for left axis

ylabel(hx(2),’v_C (V)’) % label for the right axis

set(h1,’LineStyle’,’-’,’LineWidth’,2);

set(h2,’LineStyle’,’--’,’LineWidth’,2);

legend([h1 h2],[’i_R’],[’v_C’]) % to put a legend on the graph

title(’Example 8’)
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Figure 4.7: Example 30: Plots of iR(t) and vC(t).

4.1.3 Diodes as rectifiers

Diodes are used for many different purposes in electronic circuits. One pri-
mary application is rectification. Electrical energy is distributed in the form of
alternating current. Although this form of energy is suitable for most electri-
cal appliances, like machinery, heating, and lighting, direct current supplies are
necessary for electronic instrumentation. Almost all electronic instruments have
power supply sub-system, where AC energy supply is converted into DC voltage
supplies in order to provide the necessary energy for the electronic circuits. We
first need to rectify the AC voltage to generate a DC voltage.

4.1.4 Half-wave rectifier

Consider the circuit depicted in Fig. 4.8(a). There is a current flowing through
the circuit in Fig. 4.8(b) during the positive half cycles of the AC voltage, vin,
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Figure 4.8: (a) Half-wave diode rectifier, (b) the equivalent circuit, (c) the input
AC voltage, vin(t), with a peak value, Vp; the output voltage, vo(t), on the load
resistor, R.

at the input, while it becomes zero during negative half cycles. The current
starts flowing as soon as vin exceeds V0 = 0.7V and stops when vin falls below
V0. The voltage that appears across the load, vo, is, therefore, sine wave halves
as depicted in Fig. 4.8(c). This voltage waveform is neither an AC voltage nor
a DC voltage, but it is always positive.

When this circuit is modified by adding a capacitor in parallel with R, we
obtain the circuit in Fig. 4.9(a), and its equivalent Fig. 4.9(b). The capacitor
functions like a filter together with the resistor, to smooth out vo(t).

Consider the vo(t) waveform in Fig. 4.9(c) with RC = 10T .

� When vin(t)−V0 exceeds vo(t) (at t=tr), the diode starts conducting, and
the current through the diode charges up the capacitor.

� The charge up continues until vo reaches the peak, Vp − V0, at t=T .

� After the peak voltage is reached, the voltage at the anode of the diode,
vin, falls below Vp and hence the voltage across the diode, vin−vo, becomes
less than Vo. The current through the diode ceases flowing. The diode is
reverse biased.

� Now, the AC voltage source is isolated from the parallel RC circuit, and
the capacitor is charged up to Vp−Vo. The capacitor starts discharging on
R with a time constant of RC. If RC is small, as depicted in Fig. 4.9(c)
for RC = T , the capacitor discharges quickly. If RC is large, the discharge
is slow, as shown in the case with RC = 10T .
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Figure 4.9: (a) Half-wave diode rectifier with RC filter, (b) equivalent circuit
and (c) voltage waveforms on load resistor for RC = T and RC = 10T .

� As vin increases for the next half-cycle of positive sine wave tip, it exceeds
the voltage level to which the capacitor discharged until then, at t=T + tr,
and the diode is switched on again.

� It starts conducting, and the capacitor is charged up to Vp − V0 all over
again (t=2T ).

� The fluctuation in the output voltage is called ripple. Clearly, the case for
RC = T has a larger ripple than the case for RC = 10T .

The waveform obtained in Fig. 4.9(c) is highly irregular, but it is obviously
a better approximation to a DC voltage compared to the one in Fig. 4.8(c). We
prefer an electrolytic capacitor in this circuit, which possesses polarity. Large
capacitance values in small physical sizes are available in the electrolytic form.
Large capacitance values allow us to have more charge storage for the same
voltage level, thus smoother output waveforms with smaller ripple. In this
circuit, the voltages that may appear across the capacitor are always positive
because of rectification, and hence there is no risk in using such a polarized
capacitor type. Note that connecting an electrolytic capacitor in the wrong
direction may destroy the capacitor.

Ripple estimation for the half-wave rectifier

Consider the vo(t) waveform with RC = 10T in Fig. 4.9(c). We would like to
find the peak-to-peak ripple voltage, Vr = vo(0) − vo(tr). We can write the
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output voltage waveform mathematically as

vo(t) =

{
(Vp − V0)e

−t/τ for 0 ≤ t ≤ tr

Vp cos(
2π
T t)− V0 for tr ≤ t ≤ T

(4.4)

It is clear that vo(0) = Vp − V0. If the time constant, τ , is large compared to
the period, T , tr is very close to T . Using the approximation tr ≈ T , we can
find vo(tr):

vo(tr) ≈ (Vp − V0)e
−T/τ if T ≪ τ (4.5)

Since T/τ ≪ 1, we can use the first two terms of the Taylor series for the
exponential function (e−x ≈ 1− x for x ≪ 1):

vo(tr) ≈ (Vp − V0)

(
1− T

τ

)
if T ≪ τ (4.6)

The peak-to-peak ripple voltage for the half-wave rectifier is given by

Vr = v0(0)− vo(tr) ≈ (Vp − V0)
T

τ
= (Vp − V0)

T

RC
if T ≪ τ (4.7)

If T ≪ τ is not satisfied (as in the case of RC = T in Fig. 4.9(c)), then we
have to find the value of tr using the equation:

v0(tr) = (Vp − V0)e
−tr/τ = Vp cos(

2π

T
tr)− V0 (4.8)

Since an analytical solution does not exist, we must use numerical techniques
to find the solution.

Example 31

Find the peak-to-peak ripple voltage amplitude for the half-wave rectifier when
vin(t) = 25 cos(2π50t), V0=0.7 V, R = 470 Ω and C = 1000 µF.

We have T = 1/50Hz=20 ms. τ = RC = 470 · 1000 · 10−6 = 470ms. Since
T ≪ τ , we can use Eq. 4.7:

Vr ≈ (Vp − V0)
T

τ
= (25− 0.7)

20

470
= 1.0 Vpp

This circuit is also solved with LTSpice circuit simulator (see page 300 for a
tutorial on LTSpice). The capacitor voltage and diode current obtained after a
transient simulation are given in Fig. 4.10. The results show that the peak-to-
peak ripple voltage is 0.95 V (our estimate of 1 V is reasonably close). The peak
diode current is 1.68 A, while the average resistor current is only 50.5 mA. Note
that the diode current exists only during a short period while the capacitor is
being charged.
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Figure 4.10: LTSpice schematic of the half-wave rectifier and the results of
LTSpice simulation for the output voltage, the current in the diode, and the
resistor.

Newton-Raphson method

We can use the Newton-Raphson method (named after English Mathematician
and Physicist Isaac Newton (1642–1727) and English Mathematician Joseph
Raphson (1648–1725)) the find the zero of a function f(x) in an iterative manner:

xn+1 = xn − f(xn)

f ′(xn)
(4.9)

where f ′(x) is the derivative of the function f(x). We stop the iterations, when
xn+1 and xn are very close to each other.

Example 32

Find the peak-to-peak ripple voltage amplitude for the previous example when
R=220 Ω and C = 100µF.

τ = RC = 220 · 100 · 10−6 = 22ms. Since T ≪ τ is not satisfied, we must
find the intersection point, tr, numerically from

vo(tr) = (Vp − V0)e
−tr/τ = Vp cos(

2π

T
tr)− V0

or

24.3e−tr/τ = 25 cos(
2π

T
tr)− 0.7

To find the value of tr, let us use Newton-Raphson method to find the zero of
the function

f(t) = 24.3e−t/τ − 25 cos(
2π

T
t) + 0.7 = 0
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First, we find the derivative of f(t):

f ′(t) = −24.3

τ
e−t/τ + 25

2π

T
sin(

2π

T
t)

Therefore, the iteration formula is

tn+1 = tn −
24.3e−t/τ − 25 cos( 2πT t) + 0.7

− 24.3
τ e−t/τ + 25 2π

T sin( 2πT t)

We begin by an initial estimate of t1 = 0.9T=18 ms. We find in the consecutive
iterations, t2=16.3, t3=16.6, t4=16.6. Hence, tr=16.6 ms and the peak-to-peak
ripple voltage is Vr = 24.3(1−e−tr/τ )=12.9 V. With the approximate expression
of Eq. 4.7, we get 22 V, not very close to the correct value.

A MATLAB program to perform the Newton-Raphson iterations is given
below:

% MATLAB program to demonstrate

% Newton-Raphson method

clear all

T=1/50; % period

R=220; % resistance value

C=100e-6; % capacitance value

tau=R*C; % time constant

Vp=25; V0=0.7;

error=1e-6; % error for stop condition

t=0.9*T; % initial estimate

condition=true; % initialize condition

while condition % repeat while condition is true

f=(Vp-V0)*exp(-t/tau)-Vp*cos(2*pi*t/T)+V0;

fprime=-(Vp-V0)/tau*exp(-t/tau)+Vp*2*pi/T*sin(2*pi*t/T);

tnew=t-f/fprime; % Newton-Raphson iteration step

condition=(abs(tnew-t)>error); % check condition

t=tnew; % get ready for new iteration

end

ripple=(Vp-V0)*(1-exp(-t/tau)) % result

rippleEst=(Vp-V0)*T/tau % approx result

4.1.5 Full-wave rectifier

If we have two identical AC sources, we can use both halves of the cycle to get
a full-wave rectifier, as depicted in Fig. 4.11(a).

� In the positive half-cycle of vAC , D1 conducts, and D2 is OFF. While the
energy is supplied by the upper AC source, the capacitor C gets charged
to the peak value minus the voltage drop across the diode: Vp − V0.
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� In the negative half-cycle, the lower AC source provides the current since
D2 is conducting, and D1 is OFF.

As shown in Fig. 4.11(b), the capacitor is charged in the same direction to the
same peak value: Vp − V0. Thus, the capacitor is charged to the peak value
twice in one cycle, reducing the amplitude of ripple.

+

+

vAC

vAC

+

C R

D1

D2

Vp cos(ωt)

Vp cos(ωt)

τ= RC

(a) (b)

TT/2

+

-

vo(t)

vo(t)

tr

Vp-V0

Figure 4.11: (a) A full-wave rectifier utilizing two identical AC sources, (b) the
voltage vo(t) across the capacitor.

Ripple estimation for the full-wave rectifier

For the full-wave rectifier, the period is halved compared to the half-wave recti-
fier. If the time constant, τ = RC, is much greater than half the period of the
sine wave, we estimate the intersection of the exponential with the sine wave as
tr ≈ T/2. Hence, we can use the modified form of Eq. 4.7.

The peak-to-peak ripple for the full-wave rectifier is

Vr ≈ (Vp − V0)
T/2

τ
= (Vp − V0)

T

2RC
if T/2 ≪ τ (4.10)

Two full-wave rectifiers

It is possible to combine two full-wave rectifiers using two identical AC sources
to generate positive and negative DC voltages. As shown in Fig. 4.12(a), this
configuration makes use of both halves of both sources.

� In the positive half-cycle of vAC , D1 and D4 conduct while the other two
diodes are OFF. The upper AC source charges C1 to Vp −V0 through D1,
and the lower AC source charges C2 to −(Vp − V0) through D4.

� In the negative half-cycle, D2 and D3 are conducting. The lower source
charges C1 through D2, and the upper source charges C2 through D3 to
the same peak value.

We get a positive DC voltage as well as a negative DC voltage. Obviously, the
ripple expression is the same as a full-wave rectifier.
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Figure 4.12: (a) Two full-wave rectifiers utilizing two identical AC sources, (b)
the voltage ±vo(t) across the load resistors.

4.1.6 Bridge rectifier

A common way of rectifying a single AC voltage is to use four diodes instead of
one, as shown in Fig. 4.13. We utilize the negative half cycles as well as positive
ones of the same AC source. The four-diode configuration is called a bridge,
and the circuit is called a bridge rectifier. Four diodes are widely available
commercially in a single package for use in bridge rectifiers.*

� When vAC is in its positive phase, D2 and D4 conduct, and current flows
through D2, the capacitor, and D4 until the capacitor is charged up to
the peak value, Vp − 2 V0. The peak voltage for vL is less than the one
in a single diode case because the charging voltage has to overcome the
threshold voltage of two diodes instead of one.

� During the negative half-cycles, D1 and D3 conduct, and the capacitor
is thus charged up in the negative phase as well. Since the capacitor is
charged twice in one cycle of vAC the ripple in the waveform of Fig. 4.13(c)
is nearly the same as that in the full-wave rectifier.

+vAC +

C R
Vp cos(ωt)

τ= RC

(a) (b)

TT/2

+

-

vo(t)

vo(t)

tr

Vp-2V0

D1 D2

D3D4

Figure 4.13: (a) Bridge rectifier, (b) rectified output voltage without capacitor
(thin curve), and filtered output voltage (thick curve).

*The same four-diode bridge configuration can also be used for the two full-wave rectifiers
of Fig. 4.12(a).
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Ripple estimation for bridge rectifier

For the bridge rectifier, the period is the same as the full-wave rectifier. However,
the peak voltage is Vp− 2V0 rather than Vp−V0. If the time constant, τ = RC,
is much greater than half the period of the sine wave, we can use the modified
form of Eq. 4.10.

The peak-to-peak ripple for the bridge rectifier is

Vr ≈ (Vp − 2V0)
T/2

τ
= (Vp − 2V0)

T

2RC
if T/2 ≪ τ (4.11)

Example 33

Find the peak-to-peak ripple voltage amplitude for the bridge rectifier when
vAC(t) = 25 cos(2π50t), R = 470Ω and C = 1000µF.

From Eq. 4.11:

Vr ≈ (Vp − 2V0)
T/2

τ
= (25− 1.4)

10

470
= 0.5Vpp

The ripple voltage is half of the ripple for the half-wave rectifier circuit of p. 143
with the same R and C values.

4.1.7 Zener diodes as voltage sources

Zener diodes are p-n junction diodes with well-defined and relatively small
breakdown voltages. They are used as a DC voltage reference in the vicin-
ity of breakdown voltage as shown in Fig. 4.14. The symbol for the zener diode
is also depicted in the same figure. It is named after its inventor, Clarence
Melvin Zener, an American physicist (1905–1993).
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Figure 4.14: A 5.6V zener diode and its characteristics.
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I − V characteristics of a zener diode can be expressed as

vD =

{
0.7 V (ON) if iD > 0

−VZ (Zener) if iD < 0
iD = 0 (OFF) if − VZ < vD < 0.7

(4.12)

When a zener diode is used in a circuit given in Fig. 4.15(a), a reverse diode
current

I = −ID =
VS − VZ

R
(4.13)

, flows through the diode as long as VS > VZ . Vo = VZ appears across the diode
independent of the value of VS as long as VS > VZ . We call this action “voltage
regulation”. On the other hand, if VS is less than VZ , the diode is no longer in
the breakdown region, and behaves like an open circuit. In that case, we have
Vo = VS , and no voltage regulation.

R

RL

+VS

Vo

(b)

R

+VS

Vo

(a)

I I

IL

Figure 4.15: Zener diode in a voltage reference circuit.

Assume that a load resistor RL is connected across the zener diode, as shown
in Fig. 4.15(b). If the zener diode is in the breakdown region and a reverse
current flows, we have Vo = VZ . In this case, the current through RL is

IL =
VZ

RL
(4.14)

To satisfy this condition, we must have

I =
VS − VZ

R
> IL or VZ <

RL

R+RL
VS (4.15)

Therefore, Vo = VZ is independent of the value of VS , and voltage regulation is
achieved and as long as Eq. 4.15 is satisfied. We note that under this condition,
the zener diode dissipates a power of

PZ = VZ(I − IL) = VZ

(
VS − VZ

R
− VZ

RL

)
(4.16)

which must be less than the allowed power dissipation rating of the zener diode.
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If the condition in Eq. 4.15 is not satisfied, the zener diode remains off. The
output voltage is determined by the voltage divider formed by R and RL:

Vo =
RL

R+RL
VS (4.17)

and there is no voltage regulation.

Water flow analogy of a zener diode

Fig. 4.16 demonstrates the water flow analogy of a zener diode. In the left figure,
the water flows from left to right, the larger flap opens. If the water comes from
the right with small pressure (as in the middle figure), both flaps stay closed.
If the pressure from the right is sufficiently high, the smaller flap with a spring
opens, as shown in the right figure.

spring

iD<0iD=0iD>0

vD>0 vD <0 vD<-VZ

reverse direction
small pressure

OFF

forward direction
small pressure

ON

reverse direction
large pressure

ON
(a) (b) (c)

Figure 4.16: Water flow analogy of a zener diode: (a) Current/water flows in
the forward direction, (b) current/water does not flow in the reverse direction,
(c) current/water flows in the reverse direction with sufficient voltage/pressure.

Example 34

Design a 5.6 V zener diode regulator circuit for a voltage source VS , which varies
between 10 V to 13 V (for example, due to ripple). Suppose that we have a 5.6 V
zener diode, which can at most dissipate PZmax=300 mW. Find the smallest
load resistor while the regulation is still performed. For a good regulation the
minimum zener current should be 1 mA.

The maximum current that the zener diode can carry is found from its power
dissipation limit:

−ID =
PZmax

VZ
=

0.3W

5.6V
= 0.053 A = 53 mA

Referring to Fig. 4.15, we choose the value of R using the no-load condition
(i.e., when there is no RL) and under the maximum VS .

R =
VSmax − VZ

−ID
=

13− 5.6

0.053
≈ 140 Ω

Let us choose the next largest standard resistor value: R=150 Ω. With this
R, the worst-case load current is supplied when VSmin=10 V is applied. The
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current flowing in R is

VSmin − VZ

R
=

10− 5.6

150
= 29 mA

Since we must reserve at least 1 mA for the zener diode itself, we have 28 mA
remaining for the load current. This current is only sufficient for a load resistor
of

RL =
5.6

0.028
= 210 Ω

Hence the zener diode regulator supplies a constant 5.6 V output voltage for
load resistors in the range 210 Ω < RL < ∞, while the input voltage VS varies
between 10 to 13 V. With any VS and RL in this range, the zener diode current
is such that the output voltage is 5.6 V. Any excess current coming from the
source side through R flows in the zener diode, and the zener diode dissipation
is less than 300 mW limit.

Zener diodes are useful as voltage regulators only when the load current
demand is low. For higher current needs, integrated-circuit voltage regulators
must be utilized.

4.1.8 LED

Light-emitting-diode (LED) is a special semiconductor diode that emits light
when a current flows. The symbol and package polarity of an LED are shown in
Fig. 4.17(a) and (b). Since it is a diode, it carries current only in one direction.
The color of the light is determined by the type of semiconductor used in the
fabrication of the diode. The energy bandgap of the semiconductor determines
the wavelength of the emitted photons. LEDs exist in different colors of the
visible spectrum as well as infrared and ultraviolet regions.

The voltage drop across an LED is higher than 0.7 V of a regular silicon
diode. Red-colored LED’s have a voltage drop of 1.6 to 1.7 V. The voltage drops
of the infrared LEDs are lower while those of green LEDs are higher. Blue LEDs
have even higher voltage drops. The current-voltage characteristic of an LED
is similar to that of a silicon diode. The current increases exponentially as a
function of voltage, meaning that a small change in voltage can cause a large
change in current. Not to exceed the maximum current rating of LEDs, they
are typically driven by a resistor in series that limits the current. Referring to

+

-

(a) (b)

R

Vs

(c)

+
Id

Figure 4.17: (a) LED Symbol, (b) LED package showing the polarity, (c) LED
drive circuit.
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Fig. 4.17(c), the value of the series resistor, R, should be chosen as

R =
Vs − Vo

Id
(4.18)

where Id is the desired current through the LED and Vo is the voltage drop
across the LED (Vo ≈ 1.6 V for a red LED).

The light conversion efficiency of LEDs is higher than that of incandescent
lamps. Modern power LEDs are being used for illumination purposes, replacing
the conventional lamps. A typical LED lamp contains many LEDs connected
in series to increase the light output. The schematic of a low-power LED lamp
is given in Fig. 4.18. The current flowing through the LEDs is in the 30 mA to
200 mA range. The voltage to drive the LED is obtained by a bridge rectifier
and an electrolytic capacitor C2. To reduce the 220 Vrms line voltage to the
lower voltage necessary to drive the LEDs, a high-voltage capacitor, C1, is used
in series with the bridge rectifier. Since a capacitor does not dissipate any
energy, it is a low-cost and energy-saving solution to reduce the voltage. A
small resistor in series is used to limit the current and as a protection to reduce
the risk of fire in case the series capacitor fails.

♦ TRC-11 has six diodes of different types:

– 1N4001, silicon p-n junction power diode (1) suitable for rectifying
applications at frequencies below 500 Hz.

– 1N4148, silicon p-n junction signal diode (2): suitable for low power
signal applications at frequencies below 50 MHz.

– MPN3404, PIN diode (1): a special purpose diode acting as a current-
controlled variable resistor at frequencies above 1 MHz.

– NTE3019, green and red light-emitting-diodes, LED (2)

♦ TRC-11 utilizes one integrated-circuit as a linear voltage regulator to gen-
erate +6 V from +12 V.

4.2 Bipolar Junction Transistor (BJT)

One of the most common transistors is the bipolar junction transistor or BJT. It
is a semiconductor device invented by William Shockley, Walter Brattain, and

+

220Vrms

C1

R
C2

Figure 4.18: Schematic of a low-power LED lamp.
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John Bardeen in 1947. A BJT is essentially two p-n junction diodes connected
back-to-back, sharing either p or n regions. If the diodes share the p region,
the resulting BJT is called NPN type. If the n-region is the shared region, the
resulting BJT is of PNP type. The shared region of the diodes is called the
base. The other two terminals of a BJT are called emitter and collector.

The symbols of the two types of BJTs are shown in Fig. 4.19. The arrow in
the symbol is always in the emitter terminal and indicates the direction of the
emitter current, IE .

collector

emitter

base

emitter

collector

base

NPN PNP

IB IB

IC

IE

IC

IE

Figure 4.19: BJT symbols and current directions.

4.2.1 States of a BJT

The different operating states of a BJT can be summarized in Table 4.1:

State Emitter-base junction Collector-base junction

Cutoff (OFF) reverse-biased reverse-biased
Active (ACT) forward-biased reverse-biased

Rev.-active (REVACT) reverse-biased forward-biased
Saturation (SAT) forward-biased forward-biased

Table 4.1: States of a BJT in terms of the junction bias voltages.

In the cutoff state, no current flows in the emitter-base junction (IB=0) and
no current flows in the collector-base junction (IC=0). The collector acts like
an open-circuit. In the active state, we have the transistor action and high
current gain results. In this state, Eqs. ?? and ?? are valid. The collector acts
like a current-controlled current source. In the reverse active mode, the roles
of emitter and collector are interchanged, and a low current gain results. In
the saturation mode, the collector current is not determined by Eq. ??. Hence
Eqs. ?? and ?? are not valid. In that case, the collector acts like a voltage
source of value VSat. and external circuitry determines the collector current.

Since the current gain is much smaller, the reverse-active region is not a
preferred operation mode, and it should be avoided except in very rare circum-
stances. In this text, from this point on, the reverse-active state will not be
dealt with.

We consider only the three states, cutoff (OFF), active (ACT), and satura-
tion (SAT) states, as summarized in Table 4.2 for an NPN BJT.

In this table, V0 is the turn-on voltage of the base-emitter diode, and it is
in the range 0.6 to 0.8 V. VSat is the collector-emitter saturation voltage, and
it is in the range 0.1 to 0.3 V for small BJTs.

The states of a PNP BJT is similar as shown in Table 4.3. The polarities of
base-emitter and collector-emitter voltage are changed.
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State VBE VCE IB IC

OFF < V0 > 0 0 0
ACT V0 > VSat IB > 0 βIB
SAT V0 VSat IB > 0 < βIB

Table 4.2: The common three states of a NPN BJT.

State −VBE = VEB −VCE = VEC IB IC

OFF < V0 > 0 0 0
ACT V0 > VSat IB > 0 βIB
SAT V0 VSat IB > 0 < βIB

Table 4.3: The common three states of a PNP BJT.

We note that the current gain β of a BJT varies in a wide range (e.g., 180 to
460) even for the same brand and the same model transistor. β is also dependent
on the value of the collector current, temperature, and age of the BJT.

4.3 DC Analysis of BJT circuits

BJT is a nonlinear device and it can be in one the three states. Simple DC
models for different states of an NPN BJT are given in Fig. 4.20.

e

b c

e

b c

e

b c

OFF ACT SAT

IB IC

βIB

+
V0

+
V0

IB IC

VSat

+

Figure 4.20: Models for an NPN BJT to be used in DC analysis.

Simple DC models for different states of a PNP BJT are given in Fig. 4.21.
The procedure to find the state of a NPN BJT is similar to the procedure

to find the state of diodes as described earlier:

1. Assume a probable state for NPN BJT (start with ACT)

2. Substitute the DC model of the state.

3. Perform a DC analysis of the corresponding linear circuit.

4. Check if the conditions of the assumed state are satisfied:

� For ACT, IB > 0 and VCE > VSat.
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e

b c

e

b c

e

b c

OFF ACT SAT

IB IC

βIB+
V0

+
V0

IB IC

+
VSat

Figure 4.21: Models for an PNP BJT to be used in DC analysis.

� For SAT, IB > 0 and IC < βIB .

� For OFF, VBE < V0, VBC < 0.

If the conditions of the assumed state is satisfied, the solution is valid.
Otherwise, one should try another state until the conditions of that
state is satisfied.

The procedure for a PNP transistor is similar, with some quantities changing
sign:

1. Assume a probable state for PNP BJT (start with ACT)

2. Substitute the DC model of the state.

3. Perform a DC analysis of the corresponding linear circuit.

4. Check if the conditions of the assumed state are satisfied:

� For ACT, IB > 0 and −VCE = VEC > VSat.

� For SAT, IB > 0 and IC < βIB .

� For OFF, −VBE = VEB < V0, −VBC = VCB < 0.

If the conditions of the assumed state is satisfied, the solution is valid.
Otherwise, one should try another state until the conditions of that
state is satisfied.

Example 1

Find the range of values of RC such that the NPN BJT in the circuit of Fig. 4.22
stays in ACT region. We have VCC=8 V, V0=0.7 V, RB=220 KΩ, VSat=0.2 V
and β=120.

Solution

Assume that the NPN BJT is in the ACT state. We find IB=(VCC−V0)/RB=(8−
0.7)/220=0.033 mA. Hence IC=βIB=3.98 mA. To be in the active region, we
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RB RC

+

-
V0

VCC

IB +

-
VCE

IC

Figure 4.22: An NPN BJT circuit.

must have VCE=VCC −RCIC > VSat. Hence RC < (VCC −VSat)/IC=1.95 KΩ.

Example 2

Find the range of values of RB such that the PNP BJT in the circuit of Fig. 4.23
stays in ACT region. We have VCC=6 V, V0=0.7 V, RC=1.8 KΩ, VSat=0.2 V
and β is in the range 80 to 130.

RB

RC

+

-

V0

VCC

IB

+

-

VCE

IC

Figure 4.23: A PNP BJT circuit.

Solution

Assume that the PNP BJT is in the ACT state. We must have −VCE >
VSat=0.2 V. Since−VCE=VEC=VCC−RCIC=6−1.8IC >0.2 V. Hence IC <3.22 mA.
For the worst case, we use β=130. IB <3.22/130=0.025 mA. Since IB=(VCC −
V0)/RB=(6− 0.7)/RB <0.025 mA. We find RB > 214 KΩ. Note that a smaller
value of β will result in a smaller IC , and hence guaranteeing the active state
condition.

4.4 Biasing of BJTs

BJTs are normally kept in the active state to generate a current gain. Other
states do not generate a current gain. Applying certain currents and voltages
to a BJT to keep its active state is called biasing.
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Biasing of BJTs must be carefully done. It is important to design biasing
circuits with a small dependence on the value of β since the current gain, β, of
a BJT can vary wildly from device to device.

4.4.1 Simple Base Bias

The simplest biasing arrangement is shown in Fig. 4.24. The base current is

RB RC

+

-
V0

VCC

IB +

-
VCE

IC

Figure 4.24: Biasing an NPN transistor using a base resistor.

determined from

IB =
VCC − Vo

RB
(4.19)

To analyze the circuit, we assume that the BJT is in ACT region. So we have
IC = βIB . The collector voltage is determined by the the collector current and
the collector resistance, RC :

VCE = VCC −RCIC (4.20)

where β is the current gain of the BJT. To check our assumption of BJT being
in ACT region, we must check that VCE > VSat.

Otherwise, the BJT is in SAT region, and we have VCE = VSat and

IC =
VCC − VSat

RC
(4.21)

Example 3

Let us consider the schematic in Fig. 4.24 withRB=470 KΩ, RC=1 KΩ, VCC=12 V,
V0=0.7 V, and VSat=0.2 V, while β varies from 180 to 460 device to device for
a particular transistor.

We assume that the BJT is in ACT state. With β=180 from Eq. 4.19 we find
IB=24 µA, from Eq. ?? IC=4.3 mA, and from Eq. 4.20, we have VCE=7.7 V.
Since 7.7 > 0.2 V our ACT state assumption is valid.

For β=460, we find IC=11 mA, VCE = 0.94 V. Since 0.94 > 0.7, the BJT is
(luckily) still in the ACT state.

Example 4

Let us consider the same circuit above with RC=1.2 KΩ.
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We assume that the BJT is in ACT state. With β=180 from Eq. 4.20, we
have VCE=6.8 V. Since 6.8 > 0.2 V our ACT state assumption is valid.

For β=460, we find VCE = −1.3 V. Since −1.3 < 0.7, the BJT is not in the
ACT state. It is in the SAT state. We have VCE = VSat = 0.2 V and from
Eq. 4.21, IC=9.8 mA ̸= βIB .

4.4.2 Base Bias with Emitter Resistor

As the example above shows, VCE varies a lot as a function of β and it is difficult
to guarantee that the transistor operates in ACT state while β of the transistor
varies in a large range. A better circuit can be obtained by adding a resistor in
the emitter, as shown in Fig. 4.25. Since VCC = RBIB + V0 +REIE from KVL

RB RC

+

-
V0

VCC

IB +

-
VCE

IC

RE
IE

Figure 4.25: Biasing an NPN transistor using a base resistor and an emitter
resistor.

and IE = (β + 1)IB , the base current can be found from

IB =
VCC − V0

RB + (β + 1)RE
(4.22)

and assuming the transistor in ACT region, we find VCE as

VCE = VCC −RCIC −REIE (4.23)

Again we need VCE > VSat for the verification of BJT ACT state operation.
If the transistor is found to be in SAT state, then we have VCE = VSat and

use nodal analysis to find the emitter voltage:

VE

RE
− VCC − V0 − VE

RB
− VCC − VSat − VE

RC
= 0 (4.24)

We can determine the collector current from

IC =
VCC − VSat − VE

RC
(4.25)
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Example 5

Let us consider the schematic in Fig. 4.25 withRB=560 KΩ, RC=1 KΩ, RE=470 Ω,
VCC=12 V, V0=0.7 V, and VSat=0.2 V while β=180–460.

First, we assume the transistor to be ACT. From Eq. 4.22, we have IB=17 µA
(for β=180) or IB=14 µA (for β=460). From Eq. 4.23 we have VCE=7.4 V (for
β=180) or VCE=2.1 V (for β=460). The variation in VCE is smaller in this case.

4.4.3 Conventional Bias Circuit

An even better circuit can be built by adding one more resistor in the biasing
circuit (see Fig. 4.26(a)). To analyze the circuit, we first find the Thévenin

RC

+

-
V0

VCC

IB +

-
VCE

IC

RE
IERB2

RB1 RC

+

-
V0

VCC

IB +

-
VCE

IC

RE
IE

RT

VT

+

(a) (b)

Figure 4.26: (a) Conventional biasing arrangement of an NPN transistor using
two base resistors and an emitter resistor, (b) the Thévenin equivalent circuit
of the base resistors.

equivalent circuit of the two base resistors and the supply voltage as shown in
Fig. 4.26:

VT =
RB2

RB1 +RB2
VCC and RT =

RB1RB2

RB1 +RB2
(4.26)

We assume ACT state for BJT and using KVL, we can find the base current as

IB =
VT − V0

RT + (β + 1)RE
(4.27)

VCE can be found from Eq. 4.23.

Example 6

Let us consider the schematic in Fig. 4.26(a) with RB1=18 KΩ, RB2=4.7 KΩ,
RC=1 KΩ, RE=470 Ω, VCC=12 V, V0=0.7 V, and VSat=0.2 V while β=180–
460. Find the range of VCE values.
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Solution

First, we assume the transistor to be ACT. From Eq. 4.26, we have VT=2.5 V
and RT=3.7 KΩ. From Eq. 4.27, we get IB=20 µA (for β=180) or IB=8.1 µA
(for β=460). From Eq. 4.23 we have VCE=6.6 V (for β=180) or VCE=6.5 V
(for β=460). Since VCE > VSat=0.2 V, BJT is ACT for the whole range of β.
Clearly, the variation in VCE is much smaller with this biasing circuit.

Example 7

Let us consider the PNP BJT in the schematic of Fig. 4.27(a) with RB1=33 KΩ,
RB2=8.2 KΩ, RC=2.2 KΩ, RE=680 Ω, VCC=15 V, V0=0.7 V, and VSat=0.2 V
while β=90–180. Find the range of VCE .

RC

+

-
V0

VCC

IB

+

-

VCE

IC

RE
IE

RB2

RB1
RC

+

-
V0

VCC

IB

+

-

VCE

IC

RE
IE

RT

VT

+

(a) (b)

Figure 4.27: (a) Conventional biasing arrangement of a PNP transistor using
two base resistors and an emitter resistor, (b) the Thévenin equivalent circuit
of the base resistors.

Solution

First, we assume the transistor to be ACT.We have VT=(RB1/(RB1+RB2)VCC=12 V
and RT=RB1 ∥ RB2=6.57 KΩ. From

IB =
VCC − VT − V0

RT + (β + 1)RE

For β=90, IB=0.0336 mA, IC=3.02 mA, and for β=180, IB=0.0177 mA, IC=3.19 mA.
Since −VCE = VCC −REIE −RCIC , we find IE=3.05 mA, and −VCE=5.90 V
for β=90; IE=3.21 mA, and −VCE=5.79 V. Since −VCE > VSat=0.2 V, the
PNP BJT is ACT for the whole range of β.

4.4.4 Bias Circuit with Collector Feedback

In some cases, it is not desirable to have an emitter resistance. In such cases,
we can use the biasing circuit shown in Fig. 4.28. For the analysis of this circuit
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RC
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VCC

IB +

-
VCE

IC
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B

Figure 4.28: Biasing an NPN transistor using two base resistors with collector
feedback.

we assume that the BJT is ACT state and write the nodal equations at nodes
A and B:

VCE − VCC

RC
+ IC +

VCE − V0

RB1
= 0 (4.28)

V0

RB2
+

IC
β

+
V0 − VCE

RB1
= 0 (4.29)

since IB=IC/β. Solving for IC and substituting in the other equation, we get(
β + 1

RB1
+

1

RC

)
VCE =

(
β + 1

RB1
+

β

RB2

)
V0 +

VCC

RC
(4.30)

to determine VCE . There is no need to check that VCE > VSat, since VCE >
V0 > VSat at all times. So, this biasing arrangement can never go wrong as
long as RB2 is not selected too small. Indeed, if we ignore the small terms in
Eq. 4.30 we find

VCE ≈ RB1 +RB2

RB2
V0 if RC >

RB1

β
(4.31)

We note that the BJT in this biasing arrangement can never be in the SAT
state since VCE > V0 to get a positive IB . On the other hand, one should make
sure that

RB1 +RB2

RB2
V0 < VCC (4.32)

otherwise, the transistor is in the OFF state.

Example 8

Consider the schematic in Fig. 4.28 with RB1=33 KΩ, RB2=4.7 KΩ, RC=1 KΩ,
VCC=12 V, and V0=0.7 V while β=180–460.

From Eq. 4.30, we have VCE=6.6 V (for β=180) or VCE=6.0 V (for β=460).
The variation in VCE is small in spite of the large variation in β.
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4.5 Small-signal BJT Model

Small-signal models are useful to determine the gain of a BJT amplifier. The
model is called small-signal because it is valid when the applied signals are
small, and the BJT stays in the same state throughout the operation. A BJT
in the OFF state can be modelled as an open-circuit at all terminals, as shown
in Fig. 4.29. In the ACT state the transistor is modelled as a resistor between
base and emitter and as a current source between collector and emitter. In the
SAT state, the transistor is modelled with a short-circuit between collector and
emitter. For ACT and SAT states, the B-E junction is modeled as a resistor
whose value is determined by the DC current, IB , through the base-emitter
junction. The same models are valid for NPN and PNP transistors.

e

b c

rbe
ib βib

e

b c

e

b c

rbe
ib

OFF ACT SAT

ic

ic

Figure 4.29: Small-signal model of a BJT (NPN or PNP) in the OFF, ACT,
and SAT states.

rbe =
kT

qIB
(4.33)

where k is the Boltzmann constant (k = 1.38 × 10−23 J/◦K), T is the tem-
perature of the B-E junction in Kelvins, q is the charge of an electron (q =
1.6 × 10−19 coul), and IB is the DC B-E junction current in Amperes. As the
base current, IB , gets larger, the small signal resistance, rbe becomes smaller.
At room temperature (T = 300◦K) we have

kT

q
≈ 0.0259 V (4.34)

Therefore

rbe(Ω) ≈
0.0259

IB(A)
=

25.9

IB(mA)
(4.35)

The small-signal analysis of a NPN (or PNP) BJT circuit in the ACT state
can be summarized as follows:

1. Perform a DC analysis of the circuit by open-circuiting capacitors,
short-circuiting inductors, and killing the AC small-signal sources.

2. Find the DC base current, IB , and the DC collector-emitter voltage,
VCE .
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3. If IB > 0 and VCE > VSat (−VCE > VSat for PNP), the transistor is
in the ACT (active) state. In that case, substitute the small-signal
model of the transistor. Use the DC base current, IB , in calculating
rbe value.

4. Keep the AC small-signal sources, and kill the DC sources.

5. If there are capacitors whose reactances are much smaller than the
resistors in the circuit, they can be shorted. If there are inductors
whose reactances are much larger than the resistors in the circuit,
they can be open-circuited.

6. Perform a small-signal AC analysis of the circuit. If you have capaci-
tors or inductors left, use their phasor equivalents.

Our notation is as follows: DC quantities are shown by capital letters with
capital subscripts, small-signal AC quantities are denoted by lower-case letters
with lower-case subscripts. DC plus AC quantities are shown with lower-case
letters with capital subscripts: For example, iB (DC + AC) =IB (DC) +ib
(AC).

Using the small-signal models, we can easily find the voltage gain of a BJT
amplifier as exemplified below.

Example 9

Consider the BJT amplifier shown in Fig. 4.30(a) with VCC=12 V, V0=0.7 V,
RB=470 KΩ, and RC=1 KΩ with β=180–420. From the DC analysis of the
circuit, we know that the BJT is in the ACT state for all β values. Hence we
can use the small-signal model of Fig. 4.29. Assuming that DC-block capacitors,
C1 and C2, are sufficiently large at the frequency of the input sinusoidal source,
find the small-signal voltage gain of this amplifier (vout/vin). The DC-block
capacitors are there to prevent the bias circuit to be affected by the input
voltage source or output load that may be present.

RB RC

+

-
V0

VCC

IB +

-
VCE

IC

vin
+

voutC1 C2
vin RB

rbe βib

ib

RC

vout

(a) (b)

+

Figure 4.30: (a) A simple BJT amplifier, (b) The small-signal model of the
amplifier.
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We first determine the DC current flowing through the B-E junction:

IB =
VCC − V0

RB
=

12− 0.7

470K
= 0.024 mA (4.36)

Then we determine the value of the small-signal resistance rbe:

rbe =
25.9

0.024
= 1077 Ω (4.37)

The capacitors C1 and C2 act like short circuits at the operating frequency.
We kill DC the power supply VCC , hence it acts like a ground. We can draw
the small-signal model of the amplifier as in Fig. 4.30(b). In this schematic
all voltages and currents are small-signal AC voltages and currents and no DC
voltage exists. The small-signal ac current ib is given by

ib =
vin
rbe

(4.38)

Therefore, the small-signal output voltage is found as

vout = −icRC = −βibRC = −β
vin
rbe

RC (4.39)

Hence the voltage gain, Av, is

Av =
vout
vin

= −β
RC

rbe
=

{
−180 1

1.077 = −167 for β = 180
−460 1

1.077 = −427 for β = 460
(4.40)

Note that the negative sign in front of the gain value signifies that there is a
180o phase change from input to output. As β varies from device to device, the
voltage gain will also vary in this case.

Example 10

Let us find the small-signal voltage gain of the amplifier shown in Fig. 4.31(a)
with RB1=33 KΩ, RB2=4.7 KΩ, RC=1 KΩ, VCC=12 V, V0=0.7 V, and β=180–
460. We know that the BJT is in ACT state, so we can use the small-signal
model of Fig. 4.29. DC-block capacitors, C1 and C2 are sufficiently large to act
like short-circuits at the operating frequency.

From the DC analysis of the circuit, we have IB=0.029 mA, rbe=0.89 K
(for β=180) and IB=0.013 mA, rbe=1.99 K (for β=460). We write the node
equation at node A as

vout
RC

+
vout − vin

RB1
+ βib = 0 (4.41)

We also have
ib =

vin
rbe

(4.42)

Hence we find the voltage gain as

Av =
vout
vin

= −β/rbe − 1/RB1

1/RC + 1/RB1
≈ −β

RC ∥ RB1

rbe
(4.43)



4.5. SMALL-SIGNAL BJT MODEL 165

RC

+

-
V0

VCC

IB +

-
VCE

RB2

RB1 A

B

+
vin

C1

vout

C2

(a)

RB2

RB1

rbe RC

+
vin

vout

βib

B A

Figure 4.31: (a) A BJT amplifier with collector feedback, (b) The small-signal
model of the amplifier.

or

Av =

{
−196 for β = 180
−224 for β = 460

(4.44)

Note that the gain variation is small in spite of the large variation in β.

We note that if the BJT is in SAT or OFF state, no voltage gain should be
expected. Therefore, a good DC biasing design is essential to get a small-signal
voltage gain from a BJT.

Example 11

Find the gain of the circuit given in Fig. 4.32(a) with RB=10 K, RC=1 K, and
VCC=12 V.

RC

VCC

IB +

-
VCE

A

B

+
vin

C1

vout

C2

RB

(a)

RC

VCC

IB +

-
VCE

A

B+
vin

C1

vout

C2
RB

(b)

Figure 4.32: BJT circuits for examples.

In this circuit, the bias circuit is faulty. It is missing a resistor that supplies
a positive voltage to the base. Since there is no current through RB , we have
VB=0 and IB=0. Since VB < V0, the BJT is in the OFF state. IC=0 and
VCE=VCC . In this case, the small-signal gain is zero.
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Example 12

Find the gain of the circuit given in Fig. 4.32(b) with RB=10 K, RC=1 K,
V0=0.7 V, VSat=0.2 V, β=150, and VCC=12 V.

We find the DC base current, IB as

IB =
12− 0.7

10
= 1.13 mA (4.45)

Assuming that the BJT is in ACT state, we have

IC = βIB = 150× 1.13 = 169.5 mA (4.46)

Hence the collector-emitter voltage is

VCE = VCC − ICRC = 12− 169× 1 = −157 V ! (4.47)

Since VCE < VSat, the transistor is in the SAT state, and the small-signal
voltage gain is zero.

Example 13

Find the gain of the PNP BJT circuit given in Fig. 4.33(a) with the same values
of bias circuit example at page 160: RB1=33 KΩ, RB2=8.2 KΩ, RC=2.2 KΩ,
RE=680 Ω, VCC=15 V, V0=0.7 V, and VSat=0.2 V while β varies in the range
90–180. C1 and C2 are large capacitors and their effect can be neglected for the
gain calculation.

RC

+

-
V0

VCC

IB

+

-

VCE

IC

RE
IE

RB2

RB1 RC
RE

RT

(a) (b)

C1

C2

vout

+

vin

+

vin

rbe βib

vout

ib

Figure 4.33: (a) PNP BJT amplifier circuit, (b) Equivalent circuit for gain
calculation.

Solution

The bias circuit was analyzed earlier in page 160: For β=90, IB=0.0336 mA, and
for β=180, IB=0.0177 mA. Hence we determine the value of rbe for the range
of β: For β=90, rbe=0.77 KΩ, and for β=180, rbe=1.46 KΩ. The small-signal
equivalent circuit is shown in Fig. 4.33(b). Here, RT stands for the parallel



4.5. SMALL-SIGNAL BJT MODEL 167

combination of the bias resistors, RB1 and RB2. Since vin=rbeib +RE(β+1)ib,
we have

ib =
vin

rbe + (β + 1)RE
(4.48)

For β=90, ib=vin/62.6 K, and for β=180, ib=vin/124 K. Since vout=−RCβib,
the gain vout/vin is −3.16 for β=90, and −3.19 for β=180. The presence of the
emitter resistor, RE , reduces the gain, but it makes it almost independent of
the value of β.

♦ TRC-11 uses four NPN BJTs and one PNP BJT.
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4.6 Examples

Example 14

Find Vo versus Vin for the circuit shown in Fig. 4.34, assuming that the diode
is ideal.

Vin Vo

+

-

+

-

+

100

820

680

10mA

5V

VD
+
-

ID

Figure 4.34: Circuit for Example 14.

Solution

1. Assume that the diode is OFF. We can solve the remaining part using
nodal analysis:

Vo − Vin

0.68K
+

Vo

0.82K
− 10 = 0 or Vo = 0.547Vin + 3.72

This equation is valid as long as Vo < 5 or when Vin < 2.34 V. We verify
that the diode is OFF:

VD = Vo − 5 < 0

2. For Vin ≥ 2.34 V, the diode is ON. In this case, we write the nodal equation
as

Vo − Vin

0.68K
+

Vo

0.82K
− 10 +

Vo − 5

0.1K
= 0 or Vo = 0.116Vin + 4.728

We can verify that for Vin ≥ 2.34 V, the diode has a positive current
through it:

ID =
Vo − 5

0.1K
= 1.16Vin − 2.71 ≥ 0 for Vin ≥ 2.34 V

Example 15

Find the inductance current, iL(t), and the voltage vo(t) as a function of time.
Suppose that the initial inductance current, iL(0)=0, and the diodes have a
turn-on voltage of 0.7 V.



4.6. EXAMPLES 169

iL
+

iin(t)

D2

D1

L
Z

12V

iin(t)

VZ=15 V

vo(t)

+

-

vL +-20mA

10mA

=3 mH

10 µs

Figure 4.35: The circuit for Example 15.

Solution

� We have iin(0
+) = 20 mA. Since iL(0+) = 0, the current can only flow

through D1. D2 and Z remains OFF.

� vo(0
+) = −0.7 V and vL(0

+) = 12− (−0.7) = 12.7 V.

� Initially, the current in the inductance ramps up linearly:
iL(t) = (1/L)vLt = (1/3 · 10−3)12.7t = 4.2 · 103t. This continues as long
as D1 is ON.

� When iL(t1) = iin(t1) = 20 mA, D1 turns OFF. We find t1 = 4.7 µs. At
this moment iL(t1) = 20 mA.

� For t1 < t < t2 = 10 µs, the inductor current is constant at 20 mA, so
vL(t) = 0 and vo(t) = 12 V during this period.

� iin(t
+
2 ) = 10 mA and iL(t

+
2 ) = 20 mA. The extra inductance current of

10 mA can only flow through D2 and Z. Hence, D2 and Z turn ON. We
have vL(t2+) = −15.7 V and vo(t) = 27.7 V.

� Starting from 20 mA, the inductor current ramps down, since the voltage
across it is negative: iL(t) = iL(t2) + (1/L)vL(t − t2) = 0.02 − (1/3 ·
10−3)15.7(t − t2) = 0.02 − 5.2 · 103(t − t2). This continues as long as
iL(t) > iin(t).

� When iL(t3) = iin(t3) = 10 mA, iin is sufficient to cover the inductance
current. We find t3 as 0.02− 5.2 · 103(t− t2) = 0.01, or t3 = 15.2 µs.

� For t > t3, the inductor current is constant at 10 mA, so vL(t) = 0 and
vo(t) = 12 V during this time.

The waveforms are plotted in Fig. 4.36.

Example 16

Find the output voltage of the half-wave rectifier circuit given in Fig. 4.37 in
terms of given parameters (ω = 2π/T ). Assume that L is very large and the
diodes are ideal.
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20mA

10mA

10 µs

t2

iin(t)

t3
t1

iL(t)

t

10 µs

t2 t3t1
t-0.7

12

27.7

vo(t)

Figure 4.36: The solutions for Example 15.

+
RL

L

D1

D2

+ -vL(t)

+

-
Vp sin (ωt) vo (t)

iL (t)

Figure 4.37: The circuit for Example 16.

Solution

Since the inductance is very large, we assume that the inductance current,
iL(t) = IL, is a constant, and the output voltage is vo(t) = RLIL is also a
constant. In the steady-state, the average voltage across the inductor should be
zero. Otherwise, the inductance current may increase indefinitely. Since IL > 0,
one of the diodes should be turned on to carry that current. When the input
voltage Vp sinωt is greater than zero, D1 turns on. When the input voltage is
negative, D2 turns on. Hence we write the inductor voltage as

vL(t) =

{
Vp sin(ωt)− vo if Vp sin(ωt) > 0

−vo if Vp sin(ωt) < 0

Let us find the average value of vL(t) by finding the integral over one complete
cycle:

1

T

∫ T

0

vL(t) =
1

T

(∫ T/2

0

(Vp sin(
2π

T
t)− vo)dt+

∫ T

T/2

(−vo)dt

)
=

Vp

π
− vo

2
− vo

2

Hence we find

vo(t) =
Vp

π

Note that the half-wave rectifier circuit of Fig. 4.9 using a capacitor as the
voltage smoothing element has a much larger output voltage of vo(t) = Vp. So,
the circuit of Fig. 4.37 is very rarely used.
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Example 17

+
C D

+

vo (t)
+

-

vC (t)

10 sin (ωt)

Figure 4.38: The voltage clamper circuit for Example 17.

Assuming that the initial capacitor voltage, vC(0) = 0, find the output
voltage, vo(t), in the voltage clamper circuit of Fig. 4.38. Assume that the diode
has a turn-on voltage of 0.6 V.

Solution

In the first positive half cycle of the input, the diode remains off, and the
capacitor voltage remains at zero. Hence we have vo(t) = 10 sin(ωt) during this
time. In the second half-cycle when 10 sin(ωt1) < −0.6, the diode turns on.
We have vo(t) = −0.6 V. The capacitor voltage charges to the peak voltage of
vc = 10− 0.6 = 9.4 V when 10 sin(ωt2) = −10, just like the half-wave rectifier.
For t > t2, we have

vo(t) =


10 sin(ωt) for 0 < t < t1

−0.6 for t1 < t < t2

10 sin(ωt) + 9.4 for t > t2

For t > t2, we have a shifted sine wave, whose negative peaks are clamped to
−0.6 V as shown in Fig. 4.36.

10 sin (ωt)

vo (t)

t

t1 t2

10

-0.6

19.4

Figure 4.39: The input and output voltages of voltage clamper of Example 17.

Example 18

Assuming that the initial capacitor voltages, vC1(0) = vC2 = 0, find the output
voltage, vo(t), in the voltage doubler circuit of Fig. 4.40. Assume that the diodes
have a turn-on voltage of 0.6 V.
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+
+

vo (t)
+

-
10 sin (ωt)

D2

C2
C1 D1

v1 (t)
+

-

Figure 4.40: The voltage doubler circuit for Example 18.

Solution

C1 and D1 form a voltage clamper as investigated in Fig. 4.38. D2 and C2

form a half-wave rectifier of Fig. 4.9. After one and a quarter cycles, the output
voltage becomes nearly double the peak voltage of the input voltage, as shown
in Fig. 4.41.

10 sin (ωt)

t

t1 t2

-0.6

18.8

9.4
vo (t)

v1 (t)

Figure 4.41: The input and output voltages of voltage doubler of Example 18.

Example 19

L

Vin

VoD

CS
+iL

+ -vL

Io

Figure 4.42: Boost converter circuit of Example 19.

Referring to Fig. 4.42, suppose that switch is turning on and off at a fre-
quency of 1/T . D is a Schottky diode with a forward voltage drop of VF . C
is very large. The output current is sufficiently large so that the current iL
remains positive at all times. With Vin < Vo, find the duty cycle (ton/T ) in the
steady-state.
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Solution

Since C is very large, the output voltage Vo is assumed to be constant without
any ripple. In the first part of the cycle, when the switch is turned on, the
inductor has a constant voltage of Vin across it. Using the equation of the
inductor

vL = L
diL
dt

we find that the current of the inductance increases linearly starting from an
initial positive value of Ii:

iL(t) =
Vin

L
t+ Ii

At t = ton, the change in the current is

∆iL =
Vin

L
ton

In the second part of the cycle, when the switch is turned off, the current
of the inductance continues to flow. During that time, the voltage across the
inductor becomes vL = Vin − (VF + Vo) < 0. Since this is a negative and
constant value, the current of the inductance decreases linearly. The change in
the current during the time interval T − ton is given by

∆i′L =
(Vin − VF − Vo)

L
(T − ton)

In the steady-state, the increase in the current during the first part of the cycle
(ton) should be equal to the decrease in the current during the second part of
the cycle (T − ton). We must have ∆iL = −∆i′L. Hence we have

Vin

L
ton = − (Vin − VF − Vo)

L
(T − ton)

or
ton
T

=
VF + Vo − Vin

VF + Vo
(4.49)

Since the average of the inductor current should be equal to the load current,
we also have

Io = Ii +∆iL/2

Example 20

If a circuit has a nonlinear element, like a diode, we can still use Thèvenin or
Norton equivalent circuit method for the linear parts of the circuit. In this case,
the nonlinear element must be left out of the dashed-box as demonstrated in
this example.

Consider the circuit given in Fig. 4.43(a) where v1(t) is an arbitrary function
of time. Let us find the Thévenin equivalent of the resistive parts of the circuit:
Applying the procedure:
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A B

(a)

(c) (d)

(b)

R1

R2 R3

D A BR1

R2 R3

+ -

A BR1

R2 R3

+ -

Req

+
−

+
−

+
−vth

v1(t) v1(t)

(t)

Req

vth

BA

Figure 4.43: Example for Thévenin equivalent circuit for a circuit containing
nonlinear element

1. Using the voltage divider formula of Eq. 2.30, we find the open-circuit
voltage at terminals A-B with diode removed (Fig. 4.43(b)):

vth(t) =
R2

R1 +R2
v1(t)

Note that R3 does not have an effect here, since there is no current through
it.

2. Kill the voltage source as in Fig. 4.43(c). Find the resistance between the
terminals A and B (also with diode removed):

Req =
R1R2

R1 +R2
+R3

The resulting simpler circuit is shown in Fig. 4.43(d).

Example 21

For the NPN BJT circuit shown in Fig. 4.44(a), we have R1=22 KΩ, R2=8.2 KΩ,
R3=120 Ω, VCC=12 V, β=150, V0=0.7 V for BJT and diodes, and VSat=0.2 V.
Find the value of Rc to set VCE=4 V. With this value of Rc, what is VCE if
β=300?

Solution

We assume that the BJT is in ACT state since VCE = 4 > VSat=0.2 V. We find
the Thevenin equivalent circuit (Fig. 4.44(b)) with

.VT = VCC
R2

R1 +R2
= 3.26 V and RT =

R1R2

R1 +R2
= 5.97 KΩ

From KVL at the base side going to ground via emitter path:

VT = IBRT + V0 + 2V0 +R3IE
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+

-

RCR1

R2

R3

D1

D2

VCC

+

-

RC

R3

D1

D2

VCC

RT

VT

VCE VCE

(a)

IB IB

IE

IC

(b)

Figure 4.44: Circuit for Example 21.

Since IE = (β + 1)IB , we write

IB =
VT − 3V0

RT + (β + 1)R3
= 0.048 mA

Hence IC = βIB = 7.21 mA and IE = (β + 1)IB = 7.26 mA. From KVL at the
collector side going to ground via emitter path

VCE = VCC −RCIC − 2V0 −R3IE = 12− 7.21RC − 1.4− 0.12× 7.26 = 4.0

Therefore, Rc=794 Ω.
If β is changed to 300, we assume BJT is ACT and we get

IB =
3.26− 2.1

5.97 + (300 + 1)0.12
= 0.0276 mA

With IC = βIB = 8.26 mA and IE = (β + 1)IB = 8.29 mA, we get

VCE = VCC −RCIC − 2V0−R3IE = 12− 7.21× 0.794− 1.4− 0.12× 8.29 = 3.05

Since VCE > 0.2 V, BJT is indeed ACT.

Example 22

Find and plot vC(t) for the circuit shown in Fig. 4.45 in the interval 0 < t < 2 ms.
We have VCC=24 V, vC(0) = 0 V, C=150 nF, R1=82 KΩ, R2=390 Ω, β=220,
V0=0.7 V, Vsat=0.2 V, and vIN=3.3 V for t > 0.

Solution

Since vIN > 0.7 V, the BJT is not OFF. We write for the base circuit:

vIN = R1IB + V0 +R2IE = R1IB + V0 +R2(β + 1)IB
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+

-

R1

VCC

C vC

+

−
vIN

R2

Figure 4.45: Circuit for Example 22.

Hence

IB =
vIN − V0

R1 +R2(β + 1)
=

3.3− 0.7

82 + 0.39× 221
= 0.0155 mA

Now, assume that the BJT is ACT at t = 0. Hence IC = βIB = 3.40 mA and
IE = (β + 1)IB = 3.42 mA. At t = 0 we have VCE = VCC − vC(0) − R2IE =
24−0−0.39∗3.42 = 22.7 V. Since VCE = 22.7 > Vsat = 0.2 V, the BJT is ACT
at t = 0. The capacitor is charged with a constant current of IC = 3.40 mA.
Since

IC = C
dvC
dt

integrating both sides, we have

vC(t) = vC(0) +
IC
C

t = 0 +
3.40× 10−3

150× 10−9
t = 2.27× 104t

The collector to emitter voltage of BJT is given by

VCE(t) = VCC − vC(t)−R2IE = 22.7− 2.27× 104t

So, VCE decreases linearly with time. The BJT becomes SAT when VCE =
Vsat = 0.2 V at some t1 > 0:

VCE(t1) = 22.7− 2.27× 104t1 = 0.2

or t1 = 1 ms. What happens after t > t1? Consider the equivalent circuit
shown in Fig. 4.46. We have a first order circuit with an exponential solution
with vC(t1) = 22.7. We find

vC(∞) = VCC − Vsat − vIN
R2

R1 +R2
= 24− 0.2− 3.3

0.39

82 + 0.39
= 23.8

and the time constant is τ = C(R1 ∥ R2) = 58.2 µs. Therefore

vC(t) = 23.8 + (22.7− 23.8)e−(t−t1)/58.2µ for t > t1

vC(t) is plotted in Fig. 4.47 for both the ACT (the voltage increases linearly)
and the SAT regions of BJT (the voltage increases exponentially).
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+

-

R1

VCC

C vC

+

−
vIN

R2

Vsat

+

Figure 4.46: Circuit for Example 22 after the BJT became SAT.

t1

22.7

vC

0

23.8

t

ACT SAT

Figure 4.47: vC(t) for Example 22.

Example 23

For the NPN BJT circuit shown in Fig. 4.48(a), find the small-signal gain
Av = vc/ein. We have VBB=3.3 V, R1=47 KΩ, R2=1 KΩ, V0=0.7 V, β=85,
VCC=15 V, VSat=0.2 V.

Solution

We first make a DC analysis by assuming that the BJT is ACT.

IB =
VBB − V0

R1
=

3.3− 0.7

47
= 0.055 mA

Hence, IC=4.7 mA. We find VCE = VCC − ICR2=15−4.7×1=10.3 V. Since
10.3 > 0.2, ACT assumption is valid.

We draw the small-signal equivalent circuit as in Fig. 4.48(b) by killing the
DC sources, VBB and VCC , and with

rbe =
0.0259

0.055 mA
= 0.468 KΩ

We find the small-signal base current, ib, as

ib =
ein

R1 + rbe
=

ein
47.47
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+

-

R1

VCC

R2

+

ein

+
vC

iB=IB+ib

=VC+vc

R1

R2

ein

+
rbe

vc

ib βib

(a) (b)

VBB

Figure 4.48: Circuit for Example 23.

The small-signal collector voltage is

vc = −βibR2 = −85
ein
47.47

1 = −1.79ein

Therefore, the small-signal gain is Av=−1.79.
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4.7 Problems

1. For the circuit shown in Fig. 4.49, the initial voltage of the capacitor is
vC(0)=0 V, and the threshold voltage of the diode, Vo=0.7 V. Find vC(t)
for t > 0 and plot it. Make sure that you specify the value of vC(2 ms)
(It is the variable that stays continuous at discontinuities.)

+
−

1K

+
Vin

3V
Vin

t

v
C

2ms
2µF

Figure 4.49: Circuit for Prob. 1

2. For the circuit of Fig. 4.50, the switch S is closed for 0 < t < 5 µs, and
then it is kept open. The initial value of the inductor current is iL(0) = 0.
Find and plot the current of the inductor, iL(t), as a function of time
between 0 < t < 15 µs. Assume that the diode has a forward voltage drop
of 0.7 V, when it is ON.

100µH

S

D

+
iL +

5V12V

Figure 4.50: Circuit for Prob. 2

3. Find the output voltage, vo(t), in the circuit (Greinacher multiplier) of
Fig. 3, assuming that the turn-on voltages of diodes are 0.6 V. (Hint:
First find the voltage, v1(t).)

4. Determine the states of the BJT and collector to emitter voltages, VCE

in the circuit of Fig. 4.26 at p. 159 with resistor values RB1=15 KΩ,
RB2=3.9 KΩ, RC=820 Ω, RE=390 Ω and with parameters V0=0.7 V,
VSat=0.2 V, VCC=12 V, and

(a) β=100

(b) β=200

(c) β=400
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+
+

vo (t) +-

10 sin (ωt) D2

C2

C1

D1

+

+

+

D3

C3

C4

+

-
v1 (t)

Figure 4.51: Greinacher multiplier circuit of Prob. 3

5. Determine the states of BJT and collector to emitter voltages, VCE in the
circuit of Fig. 4.28 at p. 161 with resistor valuesRB1=22 KΩ, RB2=3.3 KΩ,
RC=1.5 KΩ, and with the parameters V0=0.7 V, VSat=0.2 V, VCC=12 V,
and

(a) β=100

(b) β=200

(c) β=400

6. Find the state of the BJT and the voltage, VC , in the circuit of Fig. 4.52
with resistor values RB1=2.2 KΩ, RB2=27 KΩ, RE=100 Ω, RC=1.5 KΩ,
and with the parameters V0=0.7 V, VSat=0.2 V, VCC=12 V, and

VCC

RC
RB2

RB1

+

-

RE

VC

Figure 4.52: Circuit for problem.

(a) β=70

(b) β=150

(c) β=250

7. Determine the state of the BJT and the collector to emitter voltage, VCE in
the circuit of Fig. 4.53(a) with resistor values RB1=15 KΩ, RB2=3.9 KΩ,
RB3=56 KΩ, RC=820 Ω, RE=390 Ω and with the parameters V0=0.7 V,
VSat=0.2 V, VCC=12 V and β=220.

8. Determine the collector voltage, VC in the circuit of Fig. 4.53(b) with resis-
tor values RB=120 KΩ, RC=1.5 KΩ, RE=220 Ω and with the parameters
V0=0.7 V, VSat=0.2 V, VCC=6 V, VEE=−6 V, and β=300.
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RC

+

-
V0

VCC

IB +

-
VCE

IC

RE
IERB2

RB1

(a)

RB3

RC

+

-
V0

VCC

IB +

-

IC

RE
IE

RB

VEE

(b)

VC

Figure 4.53: Circuits for problems.

9. Determine the state and the collector to emitter voltage, VCE in the circuit
of Fig. 4.54 with resistor values RB1=100 KΩ, RB2=8.2 KΩ, RC1=3.9 KΩ,
RC2=2.2 KΩ, and with the parameters V0=0.7 V, VSat=0.2 V, VCC=15 V
and β=200.

+

-
V0

VCC

IB +

-
VCE

IC

RB2

RB1 A

B

RC2

RC1

Figure 4.54: Circuit for problem.

10. Find the small-signal voltage gain, AV , of the circuit of Fig. 4.30 at p. 163
with RB=560 K, RC=820 Ω, V0=0.7 V, VSat=0.2 V, VCC=15 V and
β=150. First, find the base current and the state of the transistor.

11. Find the small-signal voltage gain, AV , of the circuit of Fig. 4.31 at
p. 165 with RB1=27 K, RB2=3.9 K, RC=680 Ω, V0=0.7 V, VSat=0.2 V,
VCC=15 V and β=150. First, find the base current and the state of the
transistor.

12. We have a NPN BJT with parameters V0=0.7 V, VSat=0.2 V while β=180–
460. Design a BJT amplifier with a small-signal voltage gain of −100±5
using a supply voltage of 15 V.
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13. Find the small-signal voltage gain of the circuit of Fig. 4.55(a) with IB=40 µA,
β=150, RC=1 K, RE=220 Ω. Assume that the transistor is in ACT state.

RC

+

-
V0

VCC

IB +

-
VCE

IC

RE
IERB2

RB1

(a) (b)

C1

C2

vout

vin +

-
V0

VCC

IB +

-
VCE

RE
IERB2

RB1

C1

C2

vout

vin

Figure 4.55: Circuits for problems.

14. Find the small-signal voltage gain of the circuit of Fig. 4.55(b) with
IB=40 µA, β=150, RE=560 Ω. Note that BJT in this circuit cannot
be in SAT state.



Chapter 5

TUNED CIRCUITS

Frequency selectivity is a fundamental concept in electronic communications.
Communicating in a particular frequency band requires the ability to confine
the signals into that band. Any filter is a frequency selective circuit. Tuned
circuits are the most commonly used frequency selective circuits.

5.1 Parallel RLC circuit

Consider the circuit in Fig. 5.1(a). A capacitor and an inductor are connected
in parallel and are driven by a current source. I is the current phasor Ip∠0
of a sinusoidal source signal i(t) = Ip cosωt at an arbitrary frequency ω. The

Figure 5.1: Parallel tuned circuit

combined parallel impedance Zp(ω) at that frequency is

Zp(ω) =

(
jωC +

1

jωL

)−1

=
jωL

1− ω2LC
(5.1)

Note that this expression is always imaginary and is equal to ∞ when

ω2LC = 1 ⇒ ω =
1√
LC

. (5.2)

This means that if the angular frequency is adjusted to this special angular
frequency, the parallel LC circuit acts as an open-circuit. This phenomenon is
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called resonance, and the frequency

fo =
1

2π
√
LC

(5.3)

fo is called the resonance frequency. A resonating circuit formed by a capacitor
and an inductor in parallel is called a parallel tuned circuit. This equation can
be reduced to the following formula to simplify calculations

f2
o (MHz2) =

25330

L(µH)C(pF)
(5.4)

This circuit is analogous to a water tank with diaphragm connected to a flywheel
in the water-flow analogy illustrated in Fig. 5.2. The water flows in the direction

flywheel

water tank

water

Figure 5.2: Water-flow analogy of LC circuit: Water tank feeding a flywheel.

shown as the diaphragm pushes the water. The flywheel gains speed, and it takes
over when the diaphragm is released. The flywheel pushes the water, and the
diaphragm is stretched in the other direction. When the flywheel stops, the
diaphragm pushes the water in the other direction. Hence, the back-and-forth
movement of the water continues at the system’s resonance frequency. The
resonance frequency is determined by the moment of inertia of the flywheel and
the stiffness of the diaphragm.

LC circuit of Fig. 5.1(a) does not contain any loss. To introduce a loss, we
should add a resistance to the circuit. Consider a slightly modified circuit given
in Fig. 5.1(b). The impedance now becomes

Zp(ω) =

(
1

R
+ jωC +

1

jωL

)−1

=
jωLR

R+ jωL− ω2RLC
=

jωL

jωL/R+ (1− ω2LC)
(5.5)

This impedance is complex, and it indicates a resonance. At frequency ωo =
1/
√
LC, Z(ω) becomes

Zp(ωo) =
jωoL

jωoL/R+ 0
= R (5.6)
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Hence, the imaginary part of the impedance vanishes at resonance. As a result,
the voltage across the circuit at ω = ω0 is

Vp = IpR (5.7)

where Vp is the output voltage phasor. In the time domain, this is Vp cosωot =
IpR cosωot. This means that the current through the resistor is exactly equal
to the input current at resonance frequency ωo.

At the resonance, the current phasor in the capacitor branch, IC is given by

IC =
Vp

1/jωoC
=

IpR

1/jωoC
= Ip(jωoRC) (5.8)

If the factor ωoRC is greater than one, we have |IC | > Ip. The capacitor
current can be larger than the current supplied by the source! In the time
domain representation, we find

iC(t) = Re{IpjωoRCejωot} = −IpωoRC sinωot = −VpωoC sinωot (5.9)

Similarly, we can find the current in the inductor branch, IL as

IL =
V

jωoL
=

IR

jωoL
= I(−jωoRC) = −IC (5.10)

Hence, the inductor current in the time domain is

iL(t) = IpωoRC sinωot = VpωoC sinωot (5.11)

A phasor diagram at the resonance is shown in Fig. 5.3(a).

Ip

IC

IL

=IR

ω=ωo

IC

IL

IR
IC

ω=ω1

Real

Imag

Real Ip

Imag

Real

IR

IL

IC

ω=ω2

(c)(b)(a)

IL

Ip

+

ICIL+

Figure 5.3: Phasor diagrams of parallel RLC circuit at different frequencies.

At the resonance, the inductor current has the same magnitude as the capac-
itor current, but it is 180o out of phase. That is why the parallel combination
of LC acts like an open-circuit: The current through the inductor cancels the
current through the capacitor.

The resonance is an interesting phenomenon!
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5.1.1 Energy in a parallel RLC circuit

At resonance, the voltage across the capacitor is given by vC(t) = Vp cosωot =
IpR cosωot. Hence the instantaneous stored energy in the capacitor is given by
(see Eq. 2.52)

EC(t) =
1

2
Cv2C(t) =

1

2
CV 2

p cos2 ωot (5.12)

The peak stored energy, ECp, is reached when cosωot = 1

ECp =
1

2
CV 2

p =
1

2
C(IpR)2 (5.13)

The inductor current iL(t) is given by Eq. 5.11. Hence the stored energy in the
inductor is given by (see Eq. 2.61)

EL(t) =
1

2
Li2L(t) =

1

2
LV 2

p (ωoC)2 sin2 ωot =
1

2
CV 2

p sin2 ωot (5.14)

The peak stored energy, ELp, is reached when sinωot = 1

ELp =
1

2
CV 2

p =
1

2
C(IpR)2 (5.15)

It is interesting to observe that the total stored energy, Es, is

Es = EC(t) + EL(t) =
1

2
CV 2

p (cos
2 ωot+ sin2 ωot) =

1

2
CV 2

p = ECp = ELp

(5.16)
Therefore, the total stored energy is always constant. The energy is being
transferred between the capacitor and inductor back and forth.

5.1.2 Quality factor

The quality factor, Q, of a resonator is defined at the resonance frequency as

Q = 2π
The total energy stored at resonance

Energy lost per cycle
= 2π

Es

Ed
(5.17)

where Es is the total energy stored in the lossless elements, and Ed is the energy
lost to dissipative elements at the resonance frequency. Q is a dimensionless
parameter. A higher Q indicates a low rate of energy loss relative to the stored
energy in the resonator.

A pendulum suspended from a high-quality bearing and oscillating in vac-
uum has a high Q, while a pendulum immersed in a liquid has a low Q. Res-
onators with high Q factors ring longer. For example, a crystal wine glass rings
for a long time when pinged, indicating that it is a resonator with a high Q
factor. Q factor is approximately equal to the number of cycles of such a ring.

5.1.3 Quality factor of a parallel RLC circuit

For a parallel RLC circuit, the total energy stored in the resonator at the
resonance frequency is given by (see Eq. 5.16)

Es = ECp =
1

2
CV 2

p (5.18)
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The power dissipated by the resistor is given by

Pd =
1

2

V 2
p

R
(5.19)

Hence in one cycle (To = 1/fo is the period at resonance frequency) the energy
dissipated is

Ed = ToPd = To
1

2

V 2
p

R
=

1

2fo

V 2
p

R
(5.20)

Therefore, the quality factor of a parallel RLC circuit is

Q = 2π
Es

Ed
= 2πfoRC = ωoRC =

R

ωoL
(5.21)

In Eq. 5.21 the last equality is reached from ωoC = 1/ωoL. To have a large
Q factor, the energy stored can be increased by a large C, and the dissipated
energy can be reduced by a large R.

After a little complex algebra, Eq. 5.5 can be written as,

Zp(ω) =
R

1 + jQ(ω/ωo − ωo/ω)
(5.22)

in terms of R, Q, and ωo. We can see that when ω = ωo, |Zp(ω)| reaches a
maximum at Zp(ωo) = R and as frequency deviates from ωo, |Zp(ω)| decreases.
The real and imaginary parts Zp(ω) = Rp(ω) + jXp(ω) of the impedance of
the parallel RLC circuit, normalized to R, versus frequency is given in Fig. 5.4.
This impedance is calculated for an RLC circuit with a Q of 10. While Rp(ω)

Figure 5.4: Normalized real and imaginary parts of Zp.

reaches R at resonance, Xp(ω) becomes zero.
There are two angular frequencies ω1 and ω2, one of which makes the above

expression Zp(ω1) = R/(1 − j) and the other, Zp(ω2) = R/(1 + j). Rp(ω)
becomes R/2 in both cases, while Xp(ω1) = R/2 and Xp(ω2) = −R/2. We have

ω1 =

√
1

LC
+

(
1

2RC

)2

− 1

2RC
and ω2 =

√
1

LC
+

(
1

2RC

)2

+
1

2RC

(5.23)
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For Q > 3.5, these frequencies are approximately given by

f1 ≈ fo

(
1− 1

2Q

)
and f2 ≈ fo

(
1 +

1

2Q

)
(5.24)

where the approximation is good within 1%. The phasor diagrams showing
the current phasors at these frequencies are given in Fig. 5.3(b) and (c). The
difference between these frequencies is

∆f = f2 − f1 =
fo
Q

(5.25)

is called the 3-dB bandwidth (BW) of the tuned circuit. The BW of the tuned
circuit in the figure is 1/10 of resonance frequency since Q is chosen as 10. From
Eq. 5.23, we can see that the angular resonance frequency, ωo = 1/

√
LC, is the

geometrical mean of ω1 and ω2:

ωo =
√
ω1ω2 or f2

o = f1f2 (5.26)

The variation of the magnitude of Zp(ω) with respect to angular frequency
is given in Fig. 5.5. In this figure, the magnitude of impedance for a circuit with

Figure 5.5: |Zp(ω)| of two parallel tuned circuits with Q=1 and Q=10.

Q=10, as in Fig. 5.4, is plotted together with the impedance of a circuit with
Q=1, for comparison. Both circuits have the same C and L values, hence the
same ωo, but the parallel resistance of the high-Q circuit is 10 times larger than
the other one. Note that |Zp(ω)| is R/

√
2 = 0.7R at ω = ω1 and ω2.

The ratio of the voltage magnitudes generated across the circuit in Fig. 5.1(b)
at resonance and ω1 (or ω2) is

|V (ωo)|
|V (ω1)|

=
|Zp(ωo)|
|Zp(ω1)|

=
√
2 (5.27)

and

20 log10

∣∣∣∣V (ωo)

V (ω1)

∣∣∣∣ = 20 log10
√
2 = 10 log10 2 = 3dB (5.28)

This is why the bandwidth ∆f = f2 − f1 is called 3-dB BW.
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Example 1

Consider RLC circuit as in Fig. 5.1(b) with C = 100 pF and R=500 Ω. Find
the value of L to resonate the circuit at 28 MHz. Find the quality factor, Q, and
determine IC , IL, and IR at resonance if Ip=1 mA. Find the 3 dB frequencies.

From Eq. 5.4 we find

L(µH) =
25330

f2
o (MHz2)C(pF)

=
25330

282 · 100
= 0.323 µH

Using Eq. 5.21 we determine

Q =
R

2πfL
=

500

2π28 · 106 · 0.323 · 10−6
= 8.80

From Eq. 5.8 and 5.21, we can find the capacitance current

IC = Ip(jωoRC) = jIpQ = j1 · 8.8 = j8.8 mA

From Eq. 5.10, we determine the inductance current as

IL = −IC = −j8.80 mA

The resistor current is
IR = Ip = 1.00 mA

Note that KCL is satisfied with Ip = IR + IC + IL (1.00 = 1.00+ j8.80− j8.80)
while |IC | and |IL| are Q times higher than the source current, Ip!

From Eq. 5.23 we find

f1 =
1

2π

√ 1018

0.323 · 100
+

(
1012

2 · 500 · 100

)2

− 1012

2 · 500 · 100

 = 26.45 MHz

and

f2 =
1

2π

√ 1018

0.323 · 100
+

(
1012

2 · 500 · 100

)2

+
1012

2 · 500 · 100

 = 29.64 MHz

As a check we use Eq. 5.26: 26.45 · 29.64 = 784.0 = 282. On the other hand,
simpler expressions of Eq. 5.24 give good approximations:

f1 ≈ 28

(
1− 1

2 · 8.8

)
= 26.41 MHz and f2 ≈ 28

(
1 +

1

2 · 8.8

)
= 29.59 MHz

5.2 Series RLC circuit

We have a series resonance when a capacitor and an inductor are connected in
series. This is depicted in Fig. 5.6(a). The impedance of this circuit is

Zs(ω) =
1

jωC
+ jωL =

1− ω2LC

jωC
(5.29)
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Figure 5.6: (a) Series LC circuit, (b) series RLC circuit.

Zs(ω) is zero when 1 − ω2LC=0 or ω = ωo = 1/
√
LC. This frequency is the

series resonance angular frequency.
When we add a series loss element R into the circuit, we obtain the circuit

in Fig. 5.6(b). The impedance of the series RLC circuit is

Zs(ω) =
1

jωC
+ jωL+R =

1− ω2LC + jωRC

jωC
(5.30)

At the angular resonance frequency, ωo, we have Zs(ωo) = R. At this angular
frequency, the effect of series L and C cancels, hence only R remains. If we
apply a voltage of Vs cosωot across the RLC circuit, the current is Is cosωot =
(Vs/R) cosωot. Hence, in phasor notation, we write

Is =
Vs

R
at ω = ωo (5.31)

The voltage phasors across the inductor and capacitor are given by

VL = IsjωoL = Vs
jωoL

R
and VC =

Is
jωoC

= −IsjωoL = −Vs
jωoL

R
= −VL

(5.32)
Therefore, the voltage across the inductor has the same magnitude but opposite
polarity of the voltage across the capacitor. The voltages add up to zero at
resonance. Also, notice that the magnitude of the inductor or capacitor voltage
can be greater than the applied voltage Vs, if the factor jωoL/R is greater than
one.

3-dB angular frequencies are given by

ω1 =

√
1

LC
+

(
R

2L

)2

− R

2L
and ω2 =

√
1

LC
+

(
R

2L

)2

+
R

2L
(5.33)

If ωoL ≫ R, we can write the approximate 3-dB frequencies as

f1 ≈ fo

(
1− 1

2Q

)
and f2 ≈ fo

(
1 +

1

2Q

)
(5.34)

5.2.1 Energy stored in a series RLC circuit

At resonance, the current through the inductor (or RLC circuit) is given by
iL(t) = Is cosωot = (Vs/R) cosωot. Hence, the instantaneous stored energy in
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the inductor is given by

EL(t) =
1

2
Li2L(t) =

1

2
LI2s cos

2 ωot (5.35)

The capacitor voltage vC(t) can be found from the phasor given in Eq. 5.32.
Hence the stored energy in the capacitor is given by

EC(t) =
1

2
Cv2C(t) =

1

2
CI2s (ωoL)

2 sin2 ωot =
1

2
LI2s sin

2 ωot (5.36)

Therefore, the total stored energy, Es, is

Es = EL(t) + EC(t) =
1

2
LI2s (cos

2 ωot+ sin2 ωot) =
1

2
LI2s (5.37)

Just like the parallel RLC circuit, the energy is being transferred between the
capacitor and inductor while the total stored energy is constant.

5.2.2 Quality factor of series RLC circuit

For a series RLC circuit, the power dissipated by the resistor is given by

Pd =
1

2
I2sR (5.38)

Hence in one period of To the energy dissipated is

Ed = ToPd = To
1

2
I2sR =

1

2fo
I2sR (5.39)

Using Eq. 5.37, the quality factor of a series RLC circuit is found as

Q = 2π
Es

Ed
=

2πfoL

R
=

ωoL

R
=

1

ωoRC
(5.40)

Note that the Q factor for the parallel circuit given in Eq. 5.21 is the inverse
of this factor. To have a large Q factor, we need to increase L to increase the
stored energy, and reduce R to reduce the dissipated energy.

The impedance of a series RLC circuit can be written as

Zs(ω) = R[1 + jQ(ω/ωo − ωo/ω)] (5.41)

Again, imaginary part of the impedance becomes zero at resonance.
The relation between ω1, ω2, and ωo is similar to the parallel case as shown

in Fig. 5.7.

5.3 Equivalence of series and parallel RLC cir-
cuits

We often use circuits that do not look like the parallel or series tuned circuit
morphologies we discussed above. One very common form is given in Fig. 5.8.
The inductors usually possess certain losses, which can be modeled by a series
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Figure 5.7: Real and imaginary parts of Zs(ω) normalized to series resistor R.

Figure 5.8: Real and imaginary parts of Zs(ω) normalized to series resistance
R.

resistor. This kind of circuit is called the tank circuit. As far as the resonance
is concerned, this circuit can be viewed as a series resonance circuit containing
series-connected C, LS , and RS . However, we are interested in what appears
across the capacitor terminals. The admittance of the tank circuit is

YT (ω) = jωC +
1

RS + jωLS
=

RS

R2
S + ω2L2

S

+ jω
R2

SC − LS + ω2L2
SC

R2
S + ω2L2

S

(5.42)

At the resonance, the imaginary part must be zero:

R2
SC − LS + ω2

oL
2
SC = 0 (5.43)

This condition yields

ωo =

[
1

LSC
−
(
RS

LS

)2
]1/2

=

(
1

LSC

1

1 + 1/Q2

)1/2

(5.44)

If the Q is sufficiently high, the resonance frequency is similar to that of the
series RLC circuit. For example, for a Q=3.5, the resonance frequency is within
4% of 1/

√
LSC.

The tank circuit is equivalent to a parallel RLC circuit over a certain fre-
quency band. The series inductive branch impedance must be equal to the
parallel LPRP section impedance at the resonance frequency. For equivalence,
we must have

RS + jωoLS =

(
1

Rp
+

1

jωoLp

)−1

=
jωoLpRp

Rp + jωoLp
(5.45)
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Equating the real part of the left-hand-side to the real part of the right-hand-
side, we find

RS =
Rp(ωoLp)

2

R2
p + (ωoLp)2

=
Rp

R2
p/(ωoLp)2 + 1

(5.46)

Since Rp/ωoLp = Q, we have

RS =
Rp

Q2 + 1
or Rp = RS(Q

2 + 1) (5.47)

Equating the imaginary parts of Eq. 5.45 to each other, we find

ωoLS =
R2

pωoLp

R2
p + (ωoLp)2

=
ωoLp

1 + (ωoLp)2/R2
p

(5.48)

Using ωoLp/Rp = 1/Q, we arrive at

LS =
Lp

1 + 1/Q2
or Lp = LS

(
1 +

1

Q2

)
(5.49)

This equivalence also maintains that the Q’s of two circuits are also equal:

Q =
Rp

ωoLp
=

ωoLS

RS
(5.50)

The equivalence holds at frequencies near the resonance frequency.

Example 2

We have an inductor with L=0.300 µH and a series resistor of 1 Ω. Design a
resonant circuit using this inductor at 8.00 MHz. Find an equivalent parallel
RLC circuit.

From Eq. 5.50, with LS=0.300 µH and RS=1 Ω, we find at f=8.00 MHz
Q=15.1. From Eq. 5.49, we get with LS=0.300 µH, Lp=0.301 µH. Hence we
must have C=1314 pF. The parallel resistance, Rp is found from Eq. 5.47 as
Rp=229 Ω.

5.3.1 Quality factor of a capacitor

The insulator of a capacitor has a finite resistance. In real capacitor models, this
resistance (R) is usually included in the model in parallel with the capacitor.
The quality factor of a capacitor can be defined as

Q(f) = 2π
Peak energy stored in the capacitor

Energy lost per cycle
= 2π

Es

Ed
(5.51)

Assuming that Vp cos(2πft) is the sinusoidal voltage across the capacitor, Q
factor as a function of frequency is found as

Q(f) = 2π
Es

Ed
= 2π

(1/2)CV 2
p

To(1/2)V 2
p /R

= 2πfRC = ωRC (5.52)
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The equation above suggests that the Q factor increases as the frequency in-
creases. However, the insulator resistance decreases as the frequency is in-
creased. As a result, capacitors also have an optimum frequency where the
quality factor is maximized.

5.3.2 Self-resonance in capacitors

Capacitors suffer from a parasitic effect called self-resonance. The two leads
with which the capacitor is connected to the circuit causes a small parasitic
inductance in series with the capacitance. This is shown in Fig. 5.9(a). Any
piece of wire has an inductance. This inductance can be calculated from the
formula

L(nH) = 2b

[
ln(

2b

r
)− 0.75

]
(5.53)

where L is inductance in nH, b is the length of wire in cm and r is the radius of
the wire in cm.

Assume that we have a 100 pF capacitor with leads 1 cm each, made of
0.8 mm diameter wire. Ls is the sum of the two parasitic inductances due to
each lead. From Eq. 5.53, we find Ls=12.6 nH. The self-resonance frequency of
this capacitance (see Fig. 5.9(b)) is 142 MHz. At this frequency, the capacitor
appears like a short circuit. As the frequency is further increased, the capacitor
exhibits an inductive reactance! The full equivalent circuit of a capacitor is

Figure 5.9: (a) A capacitor, (b) the capacitor model with parasitic inductance,
(c) the full high frequency model

given in Fig. 5.9(c). The parallel resistance Rp models the loss in the dielectric
material from which the capacitor is made up. The series resistor Rs represents
the sum of conductor resistance in the leads and the losses at the lead contacts.
Usually, Rp is very high and can be ignored.

5.4 Real inductors

Inductors store electrical energy in a magnetic field. The magnetic field consists
of lines of magnetic force or flux. Any conductor carrying a current produces a
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magnetic field. If a conductor is wound into a solenoid, as shown in Fig. 5.10,
the flux is intensified along the solenoid axis. Flux is denoted by ϕ(t) and its

Figure 5.10: An inductor with a 7-turn solenoidal wound conductor.

corresponding phasor by Φ. The flux generated by a single loop is given by

Φ1 = ALI (5.54)

where Φ1 is the flux phasor from one turn, I is the current phasor, and AL is
the inductance constant depending on dimensions of the solenoid. The flux, Φ,
generated by a solenoid of N turns is

Φ = NΦ1 = NALI (5.55)

The voltage generated across one loop, v1(t), by this flux is

v1(t) =
dϕ

dt
(5.56)

In phasor form, we write
V1 = jωΦ (5.57)

Since there are N loops in the solenoid, we must add all single loop voltages to
obtain the total voltage across the solenoid

V = NV1 = jωNΦ = jω(N2AL)I (5.58)

Remembering that for an inductor, we have V = jωLI, we conclude that the
inductance of the solenoid is

L = N2AL (5.59)

The inductance constant AL depends on the size (e.g., diameter) of the loops
and the type of the core material on which the conductor is wound. Typical
cores [9–11] used for making inductors and transformers are:

� Air,

� Stacks of laminated steel sheets,

� Various ferrite compounds (cores shaped like rods, beads, toroids, many
other forms),

� Powdered iron-based ceramics (similar to ferrites but for higher frequen-
cies).

The laminated steel core is used for mains power transformers. The other three
types are used for higher frequencies.
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5.4.1 Air core inductors

The following formula gives the inductance of an air-core inductor depicted in
Fig. 5.11 in terms of its physical dimensions

l

d

Figure 5.11: An air core inductor with a diameter of d and length l.

L(µH) =
d2N2

46 d+ 102 l
(5.60)

where L is the inductance value in µH, d is the coil diameter in cm, N is the
number of turns, and l is the length of the coil in cm. This formula is accurate
for coils having an aspect ratio l/d greater than 0.4.

Example 3

Let us find the number of turns and the dimensions for a 0.33 µH inductor.
There are many choices for dimensions. Let us choose a coil geometry such that
the length of the coil is equal to its diameter, i.e., l = d. In this case, we have

L(µH) =
dN2

148
if l = d (5.61)

Hence for 0.33 µH inductor, we find dN2=49 cm-turns2. So for l = d =1 cm,
N =7 or for l = d = 2.5 mm, N = 14 turns.

Once it is wound, the value of an air-core inductor can be tuned within about
20%, by extending its length. As the length is increased, the inductance value
reduces.

5.4.2 Powdered iron core inductors

A toroidal shape inductor is shown in Fig. 5.12. We can find the inductance
of the toroidal inductor from AL value of the core. For example, Micrometals
T37-7 core has an AL value of 3.2 nH/turn2. On this core, the number of turns
necessary for L = 1µH is N ≈ 18 turns.

It is possible to change the inductance value by making the turns tight or
loose.

The cores are used to obtain high inductance values with smaller turn di-
ameters and a smaller number of turns. This ability of the core material is de-
termined by its permeability, µ. The permeability of air is µo = 4π · 10−7H/m.
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Figure 5.12: An inductor with 7-turn solenoidal wound conductor.

The permeability, µ, of other materials are usually given in terms of relative
permeability, µr, relative to that of air, µ = µrµo. For paramagnetic materials
suitable for use as cores, µr is always larger than one. For example, the rela-
tive permeability of steel is about µr=5000. The relative permeability of ferrite
ranges between 50 and a few thousand, and of iron powder materials, between
10 and 50.

As µr increases, we can get larger flux in a single turn, and hence, larger
inductance. The overall size of an inductor decreases as the permeability of the
material increases.

5.4.3 Core loss

Magnetic flux experiences loss in materials. The choice of a particular core ma-
terial always depends on the amount of loss in the frequency range the inductor
is used. Laminated steel sheet cores are useful only at power-line or audio fre-
quencies. At higher frequencies, their loss becomes excessive. Ferrite materials
are usable up to thee lower HF range (up to several MHz), and iron powder
cores can be used in applications up to the VHF range (up to several tens of
MHz). The loss at higher frequencies increases in materials of high permeability.
At very high frequencies, the only acceptable core material with no associated
loss is air.

The mechanism of this kind of power loss is discussed in texts on electromag-
netism extensively. We confine our discussion to its effect in the choice of core
materials and the design and modeling of real inductors. There is a trade-off
between high µr and low loss.

5.4.4 Copper loss

The other type of loss in inductors is copper loss or winding resistance. This loss
is due to the finite conductivity of the wire used in the winding. The resistance,
Rdc, of the wire at low frequencies is given by

Rdc = ρ
l

A
(5.62)

where ρ is the resistivity of the wire material (refer to Table 2.1 on page 19), l is
the length, and A is the cross-section of the wire. This loss is further aggravated
at RF because of a phenomenon called skin effect. As the frequency increases,
the current is no longer homogeneously distributed across the cross-section of
the conductor. It is confined to a thin cylindrical layer next to the conductor
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surface. Hence the cross-section of the wire is effectively decreased, resulting
in a larger winding resistance. The approximate cut-off frequency, above which
skin effect becomes significant, is given as

fsc =
0.08

d2
(5.63)

where fsc is the frequency in MHz and d is the diameter of the wire in mm. The
resistance of the wire, R(f), at a frequency f above fsc, is given by

R(f) = Rdc

√
f

fsc
for f > fsc (5.64)

The resistance increases about three times when the frequency is increased ten
times. Fig. 5.13 shows current distributions in a wire at three different frequen-
cies. Fig. 5.14 depicts the current density in a wire for different frequencies.

Figure 5.13: Color-coded current distribution in a 1 mm diameter copper wire
at 50 kHz, 200 kHz, and 1 MHz. High current: red, low current: blue.

Figure 5.14: Current density in a circular wire with a current of 1 mA as a
function of radial distance for different frequencies.

When the wires are next to each other, there is an additional effect called
proximity effect which causes the current distribution in the wires be affected
by the current in the neighboring wires increasing the resistance even further.
Fig. 5.15 shows the current distribution in three neighboring 0.35 mm diameter
wires at 3 MHz.
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Figure 5.15: Demonstration of proximity effect: Color-coded current distribu-
tion in three 0.35 mm diameter copper wires next to each other at 3 MHz. High
current: red, low current: blue.

Example 4

Let us determine the resistance of 10 cm of 1 mm diameter copper wire at
28 MHz. From 19, copper has a resistivity of ρ = 1.68 · 10−8 Ωm. Hence, a
10.0 cm copper wire of 1.00 mm diameter has a DC resistance of 2.14 mΩ. fsc
for this wire is found from Eq. 5.63 as 0.08 MHz, or 80 kHz. Then, at 27 MHz
R(f) becomes 39.3 mΩ.

5.4.5 Quality factor of an inductor

Although an ideal inductor is a lossless element, a real inductor has finite loss
due to core loss and copper loss. If there were no loss in an inductor, its model
would be an inductance only. In real inductor models, a resistor in series with
the inductor representing loss is usually included in the model. Since the core
loss and copper loss vary with the frequency, the loss resistance in the model is
frequency-dependent.

The quality factor of inductor is defined as

Q(f) = 2π
Peak energy stored in the inductor

Energy lost per cycle
= 2π

Es

Ed
(5.65)

Suppose Ip cos(2πf) is the sinusoidal current flowing in the inductor. Q factor
as a function of frequency is found as

Q(f) = 2π
Es

Ed
= 2π

(1/2)LI2p
To(1/2)RI2p

=
2πfL

R
=

ωL

R
(5.66)

Eq. 5.66 suggests that the quality factor improves as the frequency is increased.
This is true if the resistance R remains constant as frequency is changed. How-
ever, the equivalent loss resistor of the inductor increases as the frequency is
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increased due to frequency-dependent skin effect. Moreover, core loss increases
as the frequency increases. Consequently, inductors have an optimum frequency
where the Q factor is maximized.

Manufacturers usually provide loss data for materials in a variety of ways.
One common way is Q-graphs with respect to frequency. Such a graph indicates
that physically large cores provide higher peak Q than physically small cores.
Moreover, the frequency of the highest Q is achieved at low frequencies for large
cores, while the small cores peak at higher frequencies.

Typically, single layer winding (as opposed to two layers) is the best to
achieve the highest Q.

5.4.6 Self-resonance in inductors

A parasitic effect in inductances is the inter-winding capacitance. There is a
capacitance between neighboring turns in an inductance. This is demonstrated
in Fig. 5.16(a). The value of this capacitance depends on various parameters
like the physical distance between neighboring turns, the wire diameter, and
the diameter of the turn. Inductors with smaller wire and coil diameters have
smaller inter-winding capacitors. The distributed capacitive coupling between
windings can be modeled as a parallel parasitic capacitance, Cp, as shown in
Fig. 5.16(b). The series resistance, Rs, shown in the model is the total loss of
the inductor.

Figure 5.16: (a) An inductor, (b) the inductor model with parasitic capacitance

Cp can be a significant capacitance, and it can be effective in the frequencies
of interest, particularly if the inductance value is large and there are multi-layers
of winding. The self-resonance frequency, fsr, of the inductor is given by

fsr =
1

2πLCp
for Q > 10 (5.67)

Above the self-resonance frequency an inductor behaves like a capacitor. So
the self-resonance frequency defines roughly the highest usable frequency for an
inductor.

Example 5

Consider an inductor made by winding a single layer of 32 turns on a core
with an AL of 20 nH/turn2. Hence the inductance is 20.5 µH. The inductor’s
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impedance is found to be purely resistive at 20 MHz. Hence the self-resonance
frequency is 20 MHz. Assuming that the Q of the inductor is larger than 10
and L remains at the same value at 20 MHz, we can calculate the inter-winding
capacitance as Cp=3 pF.

5.4.7 RF choke

A choke is an inductor used to block higher-frequency current while letting low
frequency or DC current pass. If the intended blocking frequencies are RF, the
inductor is called RF choke or RFC. While the core loss degrades the perfor-
mance of an inductor used in resonant circuits, it provides useful properties in
a choke. A particularly important application area is radio frequency interfer-
ence (RFI) or electromagnetic interference, EMI (EMI). The interference of RF
signals within the same instrument or between instruments must be avoided.
Voltages or currents can couple by electromagnetic means to other parts of the
circuits where they are not wanted. Interference of an irrelevant signal in a
circuit can cause an instrument to malfunction.

A typical RF interference to the power supply line is shown in Fig. 5.17(a).
Here, a circuit is fed by a DC power supply. There is a bypass capacitor,

Figure 5.17: (a) An unplanned interference signal Vint being applied to the low
frequency circuits, (b) adding a series R to form a low-pass-circuit with some
loss at DC, (c) adding an RFC to form a low-pass-filter with no loss at DC.

C, at the supply terminal of the LF circuit. RF signal couples to the supply
line between the power supply and the circuit electromagnetically, producing
an interference signal Vint. While the circuit expects to see Vdc only at its
terminals, it experiences Vdc + Vint, generating an EMI problem.

One way to decrease Vint is to include a series resistance to form an RC
LPF, as in Fig. 5.17(b). The DC current drawn by the LF circuit causes a
DC voltage drop on R in this case. The DC voltage that appears at the circuit
terminals is less than Vdc, by an amount determined by R and the current drawn
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by the circuit. This is not always agreeable, particularly in circuits where the
DC current demand is high or varies considerably.

A better solution is to use an inductor instead of a resistor, as shown in
Fig. 5.17(c). All we need in this inductor is that it must exhibit a high impedance
at the frequency of Vint, and a low impedance (preferably zero impedance) at
DC. Therefore, it need not be a high Q inductor. Such an inductor is an RFC.

A common way of making RFC is to wind a few turns on a ferrite core
with high permeability. The inductor behaves like a simple inductance at low
frequencies, and its impedance is zero at DC, since the core loss of the ferrite at
low frequencies is zero. The DC supply voltage, Vdc, appears at the terminals
of the LF circuit.

The impedance of the RFC at HF, on the other hand, is obviously

Z(ω) = Rc + jωL (5.68)

where Rc is the resistance due to core loss. Since the existence of Rc makes
|Zω| larger, having a large core loss is preferable for this application. The effect
of Vint at circuit terminals is what is left after the voltage division between Z
and 1/(jωC):

Vint

1− ω2LC + jωRcC
(5.69)

A modern way to eliminate RF noise is to use a ferrite bead, a cylindrical-
shaped core of ferrite slipped over a wire. A typical ferrite material made from
nickel-zinc alloy used for this purpose might have µr=1000, and has a large loss
factor above 1 MHz. Computer power cords often have such chokes, consisting
of cylindrical ferrites encircling the cords to block noise.

5.5 Transformers

Transformers are the most common impedance transformation devices. The
ideal transformer of Section 2.12 is depicted in Fig. 5.18 again, using phasor
notation. The primary and secondary voltage and current relations in an ideal

n1 : n2
+

-

+

-

V1

I1 I2

V2 ZL
Zin

Figure 5.18: Ideal transformer in phasor notation.

transformer are
V2

V1
=

n2

n1
and

I2
I1

=
n1

n2
(5.70)

where n2/n1 is the ratio of the number of turns in the secondary winding to the
number of turns in the primary, commonly called the transformer turns ratio.
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5.5.1 Impedance transformation using an ideal transformer

If a load impedance is connected across the secondary terminals, as shown in
Fig. 5.18, the secondary terminal voltage and current must satisfy the relation

V2

I2
= ZL

The impedance seen at the primary side is given by

Zin =
V1

I1

Using the two equations above, we obtain

Zin =

(
n1

n2

)2
V2

I2
=

(
n1

n2

)2

ZL

The impedance ZL gets transformed by the (n1/n2)
2 ratio. Indeed, any shunt

(i.e., parallel) or series impedance on the secondary can be transferred to pri-
mary side as a shunt or series element provided their value multiplied by (n1/n2)

2.
Similarly, any impedance on the primary side can be transferred to the secondary
side through multiplication by the factor (n2/n1)

2.

♦ TRC-11 has one transformer at 15 MHz, and one transformer at 27 MHz.

Example 6

Consider the ideal transformer shown in Fig. 5.19(a). The series impedance Z1

on the primary can be moved to the secondary upon multiplication by (n2/n1)
2

(see Fig. 5.19(b)). Similarly, the shunt impedance Z2 is moved to the secondary
upon multiplication by the same factor as depicted in Fig. 5.19(c). All the
circuits shown in the figure are equivalent to each other as far as other circuits
are concerned.

n1 : n2 n1 : n2

Z1
Z2

Z1(n2/n1)
2

Z2

n1 : n2

Z1(n2/n1)
2

Z2

(a) (b) (c)

(n2/n1)
2V1 V1

+++
V1V2V2 V2

+++

Figure 5.19: Equivalence between the circuits involving an ideal transformer.

5.5.2 Real transformers

Transformers are two (or more) coils wound on the same core. A transformer is
shown in Fig. 5.20. Both windings are wound in the same sense. By convention,
we show the primary current, Ip, flowing into the transformer and the secondary
current, Is, out of the transformer. Therefore, the total flux generated by two
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Figure 5.20: A real transformer wound on a toroidal core.

currents is the difference between primary and secondary. The flux, Φ, generated
in the core by two currents Ip and Is is

Φ = npALIp − nsALIs (5.71)

where np and ns are the number of turns in primary and secondary windings,
respectively, AL is the inductance constant of the core. We can write Ip as

Ip =
ns

np
Is +

Φ

npAL
(5.72)

The first term is the relation between the primary and secondary currents in
an ideal transformer. It is called the transformer current. The second term is
called the magnetizing current and it is related to the finite value of the primary
inductance (note that this inductance is implicitly assumed to be infinite in the
ideal transformer).

The same flux induces voltages across the primary and secondary windings.
The induced primary and secondary voltages, on the other hand, are

Vp = jωnpΦ and Vs = jωnsΦ (5.73)

Using these relations, we can relate two voltages as

Vp

Vs
=

np

ns
(5.74)

Substituting Vp = jωnpΦ into Eq. 5.72 we obtain

Ip =
ns

np
Is +

Vp

jωn2
pAL

=
ns

np
Is +

Vp

jωLp
(5.75)

where we defined Lp = n2
pAL as the inductance of the primary winding. The two

equations relating the primary and secondary terminal voltages and currents can
be shown in the form of an equivalent circuit comprising an ideal transformer and
a parallel magnetizing inductance, Lp, as in Fig. 5.21(a). When the secondary
is open-circuited (Is = 0), the equivalent circuit should be the same as the
inductor of the primary, Lp. Since the primary of the ideal transformer does
not carry any current, and the ideal transformer can be removed altogether
leaving behind just the inductance of the primary.

Equivalently, Lp can be transferred to the secondary side upon multiplication
by (ns/np)

2 giving the value (ns/np)
2Lp = n2

sAL = Ls which is the magnetizing
inductance of the secondary (see Fig. 5.21(b)). We should place either the
primary or the secondary inductance in the equivalent circuit, but not both.
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n1 : n2

Vp Vs

+

-

+

-

IsIp
Lp

n1 : n2

Vp Vs

+

-

+

-

IsIp
Ls

(a) (b)

ideal transf. ideal transf.

Figure 5.21: Equivalent circuits of a lossless real transformer.

Coupling coefficient of a transformer

When the flux generated by the primary winding does not totally go through
the secondary winding, the transformer effect is somewhat reduced. The flux
lines that does not go through the secondary winding is called leakage flux. This
effect is defined by the coupling coefficient usually shown by k. The coupling
coefficient is the ratio of flux that is common between two coils to the flux that
is due to one coil. When k = 1, the coupling between the coils is perfect (an
almost impossible case), the equivalent circuit shown in Fig. 5.21 is valid. On
the other hand, when k = 0, the coils are totally uncoupled, we do not have a
transformer, instead we have two separate inductors.

When 0 < k < 1, the equivalent circuit of the transformer has to be modified
as shown in Fig. 5.22. In this figure, L1 = (1−k)Lp is the leakage inductance of

n1 : n2

Vp Vs

+

-

+

-

IsIp

(a)

ideal transf.
L1 L2

Lm

Figure 5.22: Equivalent circuit of a lossless real transformer with 0 < k < 1.

the primary and L2 = (1− k)(n2/n1)
2Lp = (1− k)Ls is the leakage inductance

of the secondary, while Lm = kLp is the magnetizing inductance of the primary.
Equivalently, the magnetizing inductance can be placed in secondary when its
value is modified to (n2/n1)

2Lm. When the secondary is open-circuited, the
primary circuit is equivalent to an inductance of L1+Lm = Lp which is just the
inductance of the primary winding. Conversely, if the primary is open-circuited,
the secondary circuit is equivalent to an inductance of L2 + (n2/n1)

2Lm = Ls

(the inductance of the secondary winding).

Example 7

We have a core with AL=10 nH/T2. A transformer is wound with n1=10 and
n2=4. Find the equivalent circuit of the transformer if the coupling coefficient
between two coils is k = 0.6.
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Solution

We have Lp = 102 × 10 = 1000 nH, and Ls = 42 × 10 = 160 nH. Hence
L1 = (1 − 0.6) × 1000 = 400 nH, L2 = (1 − 0.6) × 160 = 64 nH, and Lm =
0.6× 1000 = 600 nH.

Fig. 5.23 depicts photos of different size transformers suitable for different
frequency bands.

Figure 5.23: Different size transformers.

5.6 Tuned amplifiers

When the load resistance of a BJT amplifier is replaced by a parallel RLC
circuit, we get a tuned amplifier as shown in Fig. 5.24. In this amplifier, the
biasing is done by a conventional bias circuit of Fig. 4.26 at page 159. The
emitter resistance has a sufficiently large bypass capacitor, CE , not to lower the
small-signal gain. The input signal is fed to the base of the BJT through a DC-
block capacitance of Cc1 with a very small reactance at the operating frequency.
Similarly, the output voltage is fed to the output from the collector of the BJT
through another DC-block capacitance, Cc2.

RB1

RB2 RE CE

R LC

VCC

vin

vout

Cc1 Cc2

Figure 5.24: Schematic of a tuned BJT amplifier.

The small-signal equivalent circuit of this amplifier is given in Fig. 5.25. In
this model, RE is not present, since the bypass capacitor, CE , can be consid-
ered a short-circuit at the operating frequency. The small-signal voltage gain,
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RB1 RB2

R LC

vin

rbe

βib

ib

vout

Figure 5.25: Small-signal model of the tuned BJT amplifier.

Av=vout/vin, can be written as

Av = − β

rbe

jωL

(1− ω2LC) + jωL/R
(5.76)

using the impedance equation of the parallel RLC circuit given in Eq. 5.5. At
the resonance frequency, ωo = 1/

√
LC, the small-signal gain is given by

Av(ωo) = − β

rbe
R (5.77)

The small-signal gain of a tuned amplifier with a center frequency of 27 MHz is
plotted in Fig. 5.26 for IB=0.02 mA (rbe=1280 Ω), R=300 Ω, β=65, C=100 pF,
L=0.347 µH.
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Figure 5.26: Small-signal gain of a tuned BJT amplifier.

5.7 High frequency amplification using OPAMPs

We employed OPAMPs for amplification of audio signals in Chapter 3. There
we implicitly assumed that the open-loop gain, A, of the OPAMP is constant
for all frequencies. If we examine the “Open Loop Frequency Response” graph
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in the datasheet of LM358, we observe that the gain is 110 dB and constant up
to about only 20Hz. Above this frequency, the gain falls at 20 dB/decade as
the frequency increases.

5.7.1 Gain-bandwidth product

OPAMP gain is not constant, but it is a complex function of frequency, called
open-loop gain, which can be expressed as

Aol(ω) =
Adc

1 + jω/ωo
or Aol(f) =

Adc

1 + jf/fo
(5.78)

where Aol is the open-loop gain, Adc is the open-loop gain at DC, and fo is the
3-dB frequency where gain starts falling. For frequencies higher than fo, the
magnitude of the open-loop gain can be approximated as

|Aol(f)| ≈ Adc
fo
f

for f > fo (5.79)

The gain drops by 10 times (20 dB) as the frequency increases by 10 times
(one decade) for frequencies higher than fo and eventually reaches unity at a
frequency fT = Adcfo. The frequency fT is called the unity-gain bandwidth.

We use a resistive negative feedback circuit to adjust the gain (called closed-
loop gain). The unity-gain bandwidth tells us how much bandwidth can be
obtained at a given closed-loop gain value since the gain-bandwidth product
(GBW ) is a constant, and equal to the unity-gain bandwidth.

GBW = G ·BW = Adcfo = fT (5.80)

where G is the closed-loop gain and BW is the 3-dB bandwidth of the amplifier.
We should inquire about the gain-bandwidth product (or unity-gain band-

width) of an OPAMP to find out suitability at high-frequency amplification.
For example, if an OPAMP has a gain-bandwidth product of 4 MHz, it is not
suitable for amplifying signals at high frequencies like 27 MHz.

We can calculate the gain more accurately at any frequency using Eq. 5.78.
For a non-inverting OPAMP amplifier, as in Fig. 3.26(b) (on page 105), we can
write the gain as

Vo

Vin
=

1

R1/(R1 +R2) + jf/fT
(5.81)

5.8 Maximum power transfer

Consider a voltage source represented by phasor Vin as shown in Fig. 5.27(a). RS

represents the source resistance. If we connect a load resistor of RL, the current
flowing in the circuit is IL = Vin/(RS + RL), and the power, PL, delivered to
the load RL is found from the phasor power relation of Eq. 3.35 (page 86) as

PL =
|IL|2RL

2
=

1

2

|Vin|2RL

(RS +RL)2
(5.82)

With a given source of value Vin and source impedance RS , the power PL can
be maximized by choosing a suitable RL value. We find this optimum value by
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Vin Vin

RS

RL

ZS

ZL

(a) (b)

IL IL

VL

+ + +

-

Figure 5.27: Circuits to analyze maximum power transfer.

taking the derivative of PL with respect to RL and equating to zero:

dPL

dRL
=

1

2
|Vin|2

d

dRL

RL

(RS +RL)2
=

1

2
|Vin|2

R2
S −R2

L

(RS +RL)4
= 0 (5.83)

The maximum power is achieved when

RL = RS (5.84)

and the maximum power delivered to load resistance is

PLmax =
|Vin|2

8RS
=

|Vin|2

8RL
(5.85)

Now, let us consider the circuit in Fig. 5.27(b), where a source impedance,
ZS = RS + jXS , (rather than source resistance) is present. In this case, we
search for an optimum load impedance, ZL = RL + jXL. The current through
and the voltage across the load impedance is given by

IL =
Vin

ZS + ZL
and VL = Vin

ZL

ZS + ZL
(5.86)

The power delivered to load can be found from Eq. 3.36 (page 86):

PL = Re
{
VLI

∗
L

2

}
= Re

{
|Vin|2ZL

2|ZS + ZL|2

}
=

|Vin|2

2

RL

|ZS + ZL|2
(5.87)

or

PL =
|Vin|2

2

RL

(RS +RL)2 + (XS +XL)2
(5.88)

PL will be maximized if

ZL = Z∗
S implying XL = −XS and RL = RS (5.89)

and the maximum power delivered to load impedance is

PLmax =
|Vin|2

8RS
=

|Vin|2

8RL
(5.90)

Since ZL = Z∗
S , this condition is called conjugate matching. The condition

means that the load reactance is chosen to resonate with the source reactance
at the operating frequency to maximize the current and that the load resistance
is equal to the source resistance to maximize the power transfer.

Under the conjugate matching condition, the available power from the source,
PA, is equal to the power delivered, PL, to the load. Therefore, the available
power is given by

PA =
|Vin|2

8RS
(5.91)
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Example 8

Suppose we have a 1000 W audio amplifier to be used in a heavy-metal concert.
The output impedance of the audio amplifier, RS is 8 Ω. But the speaker has
a load impedance of RL=4 Ω. Find out how much power we lose by not using
a speaker of RL=8 Ω impedance.

Power ratings of audio amplifiers are specified, assuming RL=RS . From
Eq. 5.85, we find Vin =

√
8PLmaxRS =

√
8 · 1000 · 8=253 V (peak voltage of a

sinusoid). Since RL=4 Ω, from Eq. 5.82, we write

PL =
1

2

|Vin|2RL

(RS +RL)2
=

1

2

25324

(8 + 4)2
= 889 W

We can deliver 111 W less than we can deliver to a matched load.
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5.9 Examples

Example 9

Consider the circuit given in Fig. 5.28. What should RL value be for the maxi-
mum power dissipation in RL? What is the amount of power dissipation?

75

150
80mA

150

+

9V

75

A

B

+
−

A

B

Req

(a) (b)

RL RL
vth

Figure 5.28: (a) Circuit for Example 9, (b) Thévenin equivalent circuit.

Solution

First, let us find the Thévenin equivalent circuit between pins A and B. The
equivalent resistance Req can be found by killing the sources (open-circuit the
current source and short-circuit the voltage source):

Req = 150 ∥ 150 ∥ (75 + 75) = 50 Ω

Using Eq. 5.84, we must have RL = Req = 50 Ω for the maximum power
transfer. To find the power transferred, we need to find the Thévenin voltage,
Vth. Since there are two sources, we can use superposition to find vth, while RL

is disconnected.
After killing the current source, the open-circuit voltage, vAB , is found by

the voltage divider:

vAB =
150

150 + (150 ∥ 150)
9 =

150

150 + 75
9 = 6.0 V

Killing the voltage source, vAB is found using the current divider formula of
Eq. 2.35 (see page 35):

vAB =
75

75 + (150 ∥ 150 + 75)
0.080 · 75 =

75

75 + 150
0.080 · 75 =

0.080

3
75 = 2.0 V

and hence vth = 6.0 + 2.0 = 8.0 V. The power, PL, dissipated on the resistance
RL = 50 Ω is

PL =
(vth

2

)2 1

RL
=

(
8

2

)2
1

50
=

16

50
= 0.32 W

Note that there is an additional factor of 1/2 in Eq. 5.85, since the voltage
source is expressed as a phasor.
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Example 10

Given a sinusoidal source with ω = 1.25 · 108 shown in Fig. 5.29(a) in dashed
lines. Find the values of n and Cp so that the maximum power is transferred to
the load resistor, RL. The available core has AL=10 nH/T2. Find the maximum
power transferred to the load resistor RL.

+ 240 +j180

Cp

Lp

250pF
15Ω

n : 4

+ 240 +j180

Cp

Lp

(b)

(a)

15(n2/16)
250(16/n2)

RL

3 cos(ωt)

3 cos(ωt)

Figure 5.29: (a) Circuit for Example 10, (b) the components on the secondary
side transferred to the primary.

Solution

We can transfer the 250 pF capacitor and the 15 Ω resistance to the primary
side as shown in Fig. 5.29(b). The resistance is multiplied by (n/4)2 while the
capacitance is divided by (n/4)2. Hence the total shunt resistance of the load is
RT = 15(n2/16), while the total shunt reactance is the parallel combination of
Cp + 250 · 16/n2 (in pF) with the inductance Lp. The load seen by the source
should be 240−j180 Ω for a maximum power transfer. Hence the load should
be a capacitance, CT , in parallel with the resistor, RT . We write the parallel
combination as

RT ∥ 1

jωCT
=

RT · 1/(jωCT )

RT + 1/(jωCT )
=

RT

1 + jωRTCT
=

RT − jωR2
TCT

1 + ω2R2
TC

2
T

For a conjugate match we must have

RT

1 + ω2R2
TC

2
T

= 240 and
−ωR2

TCT

1 + ω2R2
TC

2
T

= −180

Solving these two equations simultaneously, we find RT = 375 Ω and CT =
16 pF. Therefore,

RT = 15

(
n2

16

)
= 375 or n = 20

Hence we have Lp = 10 nH/T2 ·202 = 4 µH. This inductance eliminates a shunt
capacitance of value

Cr =
1

ω2Lp
= 16 pF
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Hence

CT = Cp + 250

(
16

n2

)
− Cr = Cp + 10− 16 = Cp − 6 pF

Since CT = 16 pF, we find Cp = 22pF. The power dissipated on RL is given by
Eq. 5.85

PL =
|Vin|2

8RS
=

|3|2

8 · 240
= 4.7 mW

Example 11

Spark plugs used in the ignition system of gasoline motors require 12,000 to
50,000 V to fire. Since most autos have a DC voltage of 12 V, a circuit is
necessary to generate the high voltages. Refer to the circuit given in Fig. 5.30(a),
where the switch S is normally closed, and it is opened at the time when the
ignition is desired. With Lp=10 mH and R = 6 Ω, explain how the high voltages
are obtained.

+
12V Spark

plug

Insulator

Gap

1 : 200

Lp

R

S

Ideal transformer

ip

is

+
12V

Lp

R

S

ip

is

(a) (b)

=-10mAip

Spark!

=0

ip

50
,0

00
V

+

Figure 5.30: (a) Ignition circuit with S closed, (b) ignition circuit right after S
is opened.

Solution

While S is closed, the time constant in the primary side is determined by τ =
Lp/R = 1.7 ms. While S is closed for a sufficiently long time (at least 5τ =
8.3 ms), a current of

ip =
12

6Ω
= 2 A

flows in Lp. Since the spark plug is nonconducting, is = 0, and hence there is
no current in the primary of the ideal transformer. When S is opened (refer to
Fig. 5.30(b)), the continuity of inductance current dictates that the same current
must flow in the primary of the ideal transformer. Hence a current of is =
−ip(1/200) = −10 mA flows in the secondary, causing a spark in the spark plug.
Since this requires a voltage like 50,000 V, the primary voltage is momentarily
−50, 000/200 = −250 V. When the spark plug is ignited, the voltage at the
secondary drops and the current in the secondary decreases exponentially with
time.
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Example 12

A tuned BJT amplifier is built using the circuit in Fig. 5.31 with β = 90,
V0 = 0.7 V, Vsat = 0.2 V, R1 = 68 K, R2 = 6.8 K, R3 = 390 Ω, VCC = 12 V,
AL = 8 nH/T2 (for the transformer core), n1 = 20, n2 = 10, R = 470 Ω. C1 and
C2 are sufficiently large capacitors so that they can be considered short-circuit
at the operating frequency. Find the DC base current and the state of the
transistor. Find the value of C such that the resonance occurs at f0 = 15 MHz.
Determine the small-signal output voltage in terms of vin at 15 MHz.

VCC

C

R

R1

R2

+

vin

vout
C1

R3

n1 n2

C2

VE

Figure 5.31: Tuned BJT amplifier for Example 12.

Solution

Thèvenin equivalent circuit of R1, R2 and VCC is found as RT = R1 ∥ R2 =
68 ∥ 6.8 = 6.2 K and VT = VCCR2/(R1 + R2) = 1.09 V. Asuming the BJT is
ACT, we find the base current as

IB =
VT − V0

RT + (β + 1)R3
= 0.0094 mA

Hence IE = (β + 1)IB = 0.85 mA and VE = 0.33 V. Since the inductor the
transformer primary is short-circuit at DC, we have VCE = VCC − VE = 12 −
0.33 = 11.7 V and the BJT is ACT. The small-signal equivalent circuit is shown
in Fig. 5.32 with

rbe =
25.9 mV

0.0094 mA
= 2.75 K

and R3 shorted by C2. The primary inductance of the transformer is Lp =
ALn

2
1 = 3.2 µH. This can be tuned out with a capacitor of

C =
25330

152 × 3.2
= 35 pF

The load resistor R is transformed to a value (n1/n2)
2R by the transformer.

The small-signal base current is ib = vin/rbe. At the resonance Lp is tuned out
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+

vin βib

ib

vout

R1 R2 rbe C (n1/n2)
2
RLp

Figure 5.32: The small-signal model of tuned BJT amplifier for Example 12.

with C. Hence the small-signal output voltage is

vout = −β
vin
rbe

(
n1

n2

)2

R = −61.5vin

The tuned circuit has a quality factor of Q = 2πf0C(n1/n2)
2R = 6.2. Hence the

3-dB frequencies are at f1 = f0 − f0/(2Q) = 13.8MHz and f2 = f0 + f0/(2Q) =
16.2 MHz. The BJT will be ACT as long as the peak voltage of vout is less than
VCC − VE = 11.7 V at f0.
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5.10 Problems

1. In a series RLC circuit, R=100 Ω, L=10 µH, and C=3 pF. Plot the
magnitude and the phase of the impedance as a function of ω for 0.6ωo <
ω0 < 1.5ωo.

2. A voltage 10∠0 is applied to the series circuit of Problem 1. Find the
voltage across each element for f = 28MHz.

3. A series circuit with R=50 Ω, C=39 pF, and variable inductor L has an
applied voltage V=10∠0 with a frequency of 16MHz. L is adjusted until
the voltage across the resistor is maximum. Find the voltage across each
element.

4. A series circuit has R= 50 Ω, L=1 µH, and a variable capacitor C. Find
the value of C for a series resonance at f=16MHz.

5. Given a series RLC circuit with R=10 Ω, L=0.5 µH, and C=220 pF,
calculate the resonant, lower and upper half-power frequencies.

6. Show that the resonant frequency ωo of an RLC series circuit is the ge-
ometric mean of ω1 and ω2, the lower and upper half-power frequencies.

Figure 5.33: Circuits for problems 7 and 10

7. The circuit in Fig. 5.33(a) is a parallel connection of a capacitor and a
coil where the coil resistance is RL. Find the resonant frequency of the
circuit. What is the condition that no resonance occurs?

8. Show that for a series RLC circuit the quality factor is given by Q =
ωoL/R = fo/BW .

9. Find Q of the series circuit with R=20 Ω, C=47 pF and L=2 µH.

10. In the series circuit of Fig. 5.33(b), the instantaneous voltage and current
are v(t) = 1.5 sin(2π107t + 30o) V and i(t) = 10 sin(2π107t + 30o) mA.
Find R and C.

11. In the series circuit of Fig. 5.33(c), the impedance of the source is 6 + j7,
and the source frequency is 10 MHz. At what value of C will the power in
10 Ω resistor be a maximum? What is this maximum power deliverable
to 10 Ω resistor?
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Figure 5.34: Circuits for problems 12 and 13

12. In the parallel circuit of Fig. 5.34(a), determine the resonant frequency if
R=0 and R=1 Ω. Compare them to resonant frequency when R=100 Ω.

13. In the parallel circuit in Fig. 5.34(b), find the resonant frequency fo.

+ R L
C

100 1.3µH

vin(t)

Figure 5.35: Circuit for problems 14 and 15

14. Calculate the voltages across R, L, and C, of the series RLC circuit of
Fig. 5.35, if vin(t) = 5 cos(ωot). Choose C such that the circuit resonates
at a frequency of fo=28 MHz. Write down the time waveform expressions
for these voltages.

15. Calculate the same voltages in problem 14, at the series circut’s upper
and lower 3 dB frequencies. Write down the time waveform expressions
for these voltages.

16. Calculate the DC resistance of a 0.2 mm diameter wire of length 10 cm.
Calculate its skin effect cut-off frequency. Calculate the approximate cop-
per loss resistance of an inductor made of this wire at 28 MHz.

17. What must be the length of a 900 nH air core inductor if it has 21 turns
and its diameter is 5 mm?

18. Find the number of turns of an air-core inductor with L=270 nH and
d = l =5 mm.

19. AL of the T25-10 toroidal core is given as 1.9 nH/T2. Find the number
of turns required to make a 615 nH inductor using T25-10.

20. An inductor made by winding 7 turns on T20-7 toroid yields 0.13 µH with
a Q of 102 at 30 MHz. Find the approximate value of AL for T20-7 and
the equivalent series loss resistance of this inductor at 30 MHz.
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Figure 5.36: An oscilloscope probe with a compensation circuit

21. Consider the all-pass probe compensation circuit given in Fig. 5.36. Show
that the equivalent input impedance, Zeq, becomes approximately equal
to the parallel connection of Cp and Rp, when the probe is compensated
(Rp=9RT for ×10 probe).

Figure 5.37: OPAMP circuits for (a) problem 23 and (b) problem 24.

22. Consider a tuned amplifier as in Fig. 5.31 with VCC = 9 V, VE = 1 V,
IE = 2 mA, β = 60, V0 = 0.7 V, Vsat = 0.2 V and R = 220 Ω. Find the
values of R1, R2, and R3 for the correct DC bias currents. Set the small-
signal gain of the amplifier to vout/vin = −20 by choosing the transformer
turns-ratio.

23. The RF amplifier in Fig. 5.37(a) is designed using an OPAMP. The open-
loop voltage gain of the OPAMP is given as

Aol(ω) =
5 · 105

1 + jω/100

from its datasheet. What is the voltage gain of the non-inverting amplifier
at 400 kHz? What is its gain at 1 kHz?

24. The same OPAMP is used in an inverting amplifier configuration, as shown
in Fig. 5.37(b). What is the output voltage vout(t) when the input is
vin(t) = 2 cos(2π106t + 30o) volts? What is vout(t) when the input is
vin(t) = 2 cos(2π103t+ 30o)?
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Figure 5.38: Circuit for problem 25.

25. vi(t) in Fig. 5.38 is given as
vi(t) = A1 cos(2π16 · 106t) +A2 cos(2π8 · 106t),
and assume that the output
vo(t) = B1 cos(2π16 · 106t+ θ1) +B2 cos(2π8 · 106t+ θ2)
is obtained. Find the value of capacitance which maximizes the ratio
B1/B2? What are B1/A1 and B2/A2 for this value of C?



Chapter 6

FILTERS

Filters are usually used to remove undesired components of a signal. For ex-
ample, an antenna delivers a complex signal containing many components at
a large band of frequencies. It is preferable to remove the unnecessary signal
components at frequencies other than the band of interest before the signal is
amplified.

Parallel and series tuned circuits can be used to filter such signals. The
filtering performance of such circuits is only determined by the quality factor
of the circuit. It is often necessary to have filters with improved performance
compared to what simple tuned circuits can offer. In what follows, we describe
more complex circuits with higher filtering performance.

6.1 Motivation

Any electronic filter can be visualized as a block between a source (input) and
a load (output). This is depicted in Fig. 6.1. What is expected from this is to
maintain the signal components at wanted frequencies and eliminate the ones
at unwanted frequencies, as much as possible. For this purpose, we may need

Figure 6.1: An electrical filter

one of the following filter types:

� Low-pass-filter (LPF): Eliminates frequencies higher than a limit.

� High-pass-filter (HPF): Eliminates frequencies lower than a limit.

� Band-pass-filter (BPF): Eliminates frequencies outside two limits.

� Band-stop-filter (BSF): Eliminates frequencies inside two limits.

Koymen & Atalar 220 ANALOG ELECTRONICS
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6.1.1 Transducer power gain of a filter

We define the transducer power gain, GT , of a filter as

GT =
PL

PA
(6.1)

where PL is the power delivered to load, and PA is the available power (see
Eq. 5.91 on page 209) from the source. In the absence of a filter and with
RL = RS , we have PL = PA or GT = 1. The transducer power gain, GT , is
given in terms of voltages and resistances as

GT (ω) =
PL

PA
=

|Vout|2/2RL

|Vin|2/8RS
=

4RS

RL

∣∣∣∣Vout

Vin

∣∣∣∣2 (6.2)

where Vin and Vout are phasors.
GT is frequently expressed in decibels as

GT (dB) = 10 log10
PL

PA
= 10 log10

4RS

RL
+ 20 log10

∣∣∣∣Vout

Vin

∣∣∣∣ (6.3)

6.1.2 First- and second-order low-pass-filters

Consider the first-order LPF given in Fig. 6.2(a). Since

Vout

Vin
=

RL

1+jωRLC

RS + RL

1+jωRLC

=
RL

RL +RS + jωRLRSC
=

RL

RL +RS

1

1 + jω RLRS

RL+RS
C

(6.4)
With the definition

ωc =
1

RLRS

RL+RS
C

=
1

(RS ∥ RL)C
(6.5)

and combining Eqs. 6.2 and 6.4, we find

GT (ω) =
4RLRS

(RL +RS)2
1

1 + (ω/ωc)2
(6.6)

For the special case of RL = RS , the transducer power gain simplifies to

GT (ω) =
1

1 + (ω/ωc)2
(6.7)

For ω ≪ ωc or at ω=0, we have GT (0) = 1, and for ω ≫ ωc, we have GT (ω) →
(ωc/ω)

2 showing that it is an LPF.
Since

GT (ωc) =
1

2
or GT (dB)(ωc) = −3 dB (6.8)

ωc is the 3-dB frequency of the filter.

We can get a similar filtering effect if we use a series inductot instead of a
parallel capacitor, as shown in Fig. 6.2(b). In this case, the transducer power
gain is the same as Eq. 6.6 with

ωc =
RL +RS

L
(6.9)
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We expect a better filtering function if we use both a series inductance and
a parallel capacitance in the filter block. The filter in Fig. 6.2(c) has a voltage
transfer function

Vout

Vin
=

1

(1 +RS/RL)− ω2LC + jω(L/RL +RSC)
(6.10)

This expression looks like a tuned circuit transfer function, and it is not easy to

+

(a)

(c)

RS

RLC
+

RS

RL

(b)

L

+

RS

RL

L

C
+

RS

RL

L

C

(d)

Figure 6.2: First order low-pass-filters using (a) a capacitor and (b) an induc-
tor. Second-order low-pass-filters using (c) an inductor and a capacitor, (d) a
capacitor and an inductor.

immediately recognize it as an LPF. However, for the special case of RS = RL,
and with choice of ωcRSC =

√
2 and ωcL/RS =

√
2, we get a maximally flat

behavior in the pass-band, and the voltage transfer function becomes

Vout

Vin
=

1

2

1

1− (ω/ωc)2 + j
√
2ω/ωc

(6.11)

where

ωc =

√
2

LC
(6.12)

The transducer power gain of this second-order LPF is given by

GT (ω) =
4RS

RL

∣∣∣∣Vout

Vin

∣∣∣∣2 = 4

∣∣∣∣Vout

Vin

∣∣∣∣2 =
1

1 + (ω/ωc)4
(6.13)

We note that the transducer power gain of the filter shown in Fig. 6.2(d),
where the filter is flipped, is the same as Eq. 6.13.

Transducer power gains of first and second-order filters are plotted in Fig. 6.3
on a semilog plot. The vertical axis is in decibels. Note the asymptotic behavior
of the filters above the cutoff frequency. The first-order filter has a slope of
−20 dB/dec, while the second-order filter has a −40 dB/dec slope. The second-
order filter is superior to the first-order filter in two respects:

1. Suppression of signal components at frequencies higher than ωc is signifi-
cantly improved,
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2. The signal components with frequencies less than ωc are better preserved,
or less attenuated.

How many filter elements must be used? Which kind of elements must be used?
Or, what must be the values of the elements? Modern filter theory addresses
these questions by a systematic filter design technique.
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Frequency response of the third-, fourth- and fifth-order Butterworth low-pass-filters

Third-order LPF
Fourth-order LPF
Fifth-order LPF
Asymptotes

Figure 6.3: The transducer power gain of first and second-order LPFs as a
function of normalized frequency.

6.2 Polynomial filters

Modern filter theory maps the desired transducer power gain of the filter to the
properties of a class of polynomials like Butterworth, Chebyshev polynomials,
and elliptic polynomials.

The circuit morphology on which polynomial low-pass-filters are based is
ladder-type, as shown in Fig. 6.4. The basic building block in polynomial filters
is a LPF. HPF, BPF, and BSF are derived from this block. The first element
can be either an inductor or a capacitor. The topology containing less number of
inductors is generally preferred. The shunt elements in the LPF configurations
of Fig. 6.4(a) and (b) are capacitors, and series elements are inductors. At low
frequencies, inductors provide a low impedance path from the input signal to
the output, while capacitors maintain high impedance to ground, hence the low
loss. At high frequencies, the capacitor impedance is low, and therefore there
is a loss in the signal at every node. On the other hand, inductors have high
impedance, and the division effect at each node on the signal is increased. In
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R L1 L3 L5 Ln-1

C2 C4 C6 Cn R
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(a)

R

R
+

(b)

C1

L2

C3

L4 L6

C5 C7
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LPF

LPF

HPF

C1 C3 C5 Cn+1

L2 L4 L6 Ln

Figure 6.4: Ladder type low-pass-filter prototypes for (a) even, and (b) odd
number of elements. (c) High-pass-filter prototype with odd number of elements.

the HPF ladder in Fig. 6.4(c), the series and shunt elements are interchanged
compared to LPF, thus yielding exactly the opposite function.

6.2.1 Butterworth filters

A Butterworth* low-pass-filter of nth order seeks to have a transducer power
gain of

GT =
PL

PA
=

1

1 + (f/fc)2n
(6.14)

where fc is the 3-dB cutoff frequency. As f → ∞, we find GT → (fc/f)
2n,

defining the asymptotic response.
GT = PL/PA is plotted versus frequency for different number of elements,

n, in Fig. 6.5. As n increases, the transducer power gain approaches to that
of an ideal LPF. Note that for the third-order LPF, the asymptote has a slope
of −60 dB/decade (one decade is a ten-fold increase), while for the fifth-order
filter, the slope is −30 dB/octave (one octave is a two-fold increase).

The component values for Butterworth filters, normalized with respect to the
termination impedance and cutoff frequency are provided in tables. Normalized
coefficients are correct reactance and susceptance values in Ω, for 1 Ω source
and load resistance and a cutoff frequency of ωc = 1 rad/sec. A table of these
coefficients, up to eight elements, is given in Table 6.1. The coefficients for filters
with more elements can be obtained from the following relation:

bi = 2 sin

(
(2i− 1)π

2n

)
(6.15)

*Invented by British physicist Stephen Butterworth (1885–1958).
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Figure 6.5: Butterworth LPF response for different n values. At f = fc, the
filters have 3 dB attenuation.

Using this table for designing a filter is straightforward. Since the coefficients
are normalized component values, we must scale them for the given termination
resistance and cutoff frequency.

Low-pass-filter

We use the following procedure to design an nth-order Butterworth low-pass-
filter of cutoff frequency fc for load and source impedances of R:

1. Use the corresponding Butterworth table value to find the inductor value
as

Li =
biR

2πfc
(6.16)

n b1 b2 b3 b4 b5 b6 b7 b8

1 2.000
2 1.4142 1.4142
3 1.0000 2.0000 1.0000
4 0.7654 1.8478 1.8478 0.7654
5 0.6180 1.6180 2.0000 1.6180 0.6180
6 0.5176 1.4142 1.9319 1.9319 1.4142 0.5176
7 0.4450 1.2470 1.8019 2.0000 1.8019 1.2470 0.4450
8 0.3902 1.1111 1.6629 1.9616 1.9616 1.6629 1.1111 0.3902

Table 6.1: Table of prototype element values in Butterworth low-pass-filters
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2. Use the corresponding Butterworth table value to find the capacitor value
as

Ci =
bi

2πRfc
(6.17)

Above the cutoff frequency, the signal is reduced by 20n dB/decade or 6n dB/oct.
The transducer power gain of an LPF can be drawn easily using the asymp-

totic lines shown in Fig. 6.3 or 6.5: On a semilog axis, where the frequency axis
is logarithmic, first draw a line with zero slope at 0 dB line indicating the asymp-
totic behavior in the passband. Then, draw a line with slope −20n dB/decade
(one decade is a frequency ratio of 1:10) passing through the (fc, 0 dB) point
showing the response in the frequency range above the cut-off frequency. The
actual response curve approaches asymptotes at low and high frequencies, pass-
ing through (fc,−3 dB) point. The asymptotes are good approximations for
f < 0.5fc and f > 2fc.

Example 1

Let us design a third-order Butterworth low-pass-filter for a cutoff frequency of
fc=2 MHz for source and load impedances of RS = RL=300 Ω. We can use
either L1−C2−L3 topology or C1−L2−C3 topology. The second one (shown
in Fig. 6.6(a)) is preferable since it uses only one inductor. Using the n = 3
values in Table 6.1 and R=300 Ω, we find

C1 = C3 =
1.00

2π300 · 2 · 106
= 265 pF and L2 =

2.00 · 300
2π2 · 106

= 48.0µH

We can estimate the performance of the filter using Fig. 6.5: Since fc =2 MHz,

(a)

RS

RLC1

L2

C3

+
Vin

RS

RL

C1

L2

C3

+
Vin

(b)

C5

L4

Figure 6.6: (a) Third-order LPF and (b) fifth-order HPF.

at 6 MHz (f/fc = 3) the signal will be attenuated by 28 dB (voltage will be
0.04 times).

Example 2

We require a low-pass-filter for R = 50Ω, which passes the signals lower than
1 MHz with attenuation less than 1 dB and attenuates signals higher than
3.5 MHz with attenuation of more than 30 dB.

Using the decibel version of the Butterworth filter equation of Eq. 6.14 we
write the requirements as

10 log10
PL

PA
= 10 log10

1

1 + (1 · 106/fc)2n
≥ −1dB ⇒

(
1 · 106

fc

)2n

≤ 0.259
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10 log10
PL

PA
= 10 log10

1

1 + (3.5 · 106/fc)2n
≤ −30dB ⇒

(
3.5 · 106

fc

)2n

≥ 999

Taking the logarithm of both sides and solving two equations under equality
case, we write

2n ln

(
1 · 106

fc

)
= 27.63n− 2n ln fc = ln 0.259 = −1.35

2n ln

(
3.5 · 106

fc

)
= 30.13n− 2n ln fc = ln 999 = 6.91

Subtracting two equations from each other, we find n=3.29. Using one of the
equations, we reach fc=1.22 MHz. For filter order, we choose the next greater
integer: n=4. Substituting n=4 in the equations above, we find two different fc
values: 1.18 MHz and 1.47 MHz. Hence, the cutoff frequency can be selected
as any fc in the range 1.18≤ fc ≤1.47 MHz. Choosing fc=1.3 MHz and the
L1 − C2 − L3 − C4 LPF topology, we find

L1 =
0.7654 · 50
2π1.3 · 106

= 4.68µH and C2 =
1.8478

2π50 · 1.3 · 106
= 4.52 nF

L3 =
1.8478 · 50
2π1.3 · 106

= 11.3µH and C4 =
0.7654

2π50 · 1.3 · 106
= 1.87 nF

Example 3

Let us consider the OPAMP second-order low-pass-filter of Fig. 3.32(b) in p. 110
and find the condition for making it a Butterworth filter.

We assume that the source resistance, RS , and the load resistance, RL, are
4RS/RL=1. From Eq. 3.65 in p. 112, we find the transducer power gain of
Eq. 6.2 as

GT =

∣∣∣∣ Vo

Vin

∣∣∣∣2 =

∣∣∣∣ 1

1 + jω(R1 +R2)C1 − ω2R1R2C1C2

∣∣∣∣2 (6.18)

or

GT =
1

1 + ω2((R1 +R2)2C2
1 − 2R1R2C1C2) + ω4(R1R2C1C2)4

= (6.19)

This equation is in the form of Butterworth polynomial of Eq. 6.14, if

(R1 +R2)
2C1 = 2R1R2C2 (6.20)

High-pass-filter

The transfer function of a Butterworth high-pass-filter is written in the following
form

PL

PA
=

1

1 + (fc/f)2n
(6.21)

At f = fc, we have PL/PA = 0.5 = −3 dB defining the cut-off frequency of the
high-pass-filter. For f → 0, we have PL/PA → (f/fc)

2n defining the asymptote.
We use the following procedure to design an nth-order Butterworth high-

pass-filter of cutoff frequency fc for load and source impedances of R:
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1. Use the corresponding Butterworth table value to find the inductor value
as

Li =
(1/bi)R

2πfc
(6.22)

2. Use the corresponding Butterworth table value to find the capacitor value
as

Ci =
1/bi

2πRfc
(6.23)

Note that we use 1/bi rather than bi for high-pass-filter component values.
Below the cutoff frequency, the filter attenuates the signals with 20n dB/decade
or 6n dB/octave.

As in the case of LPF, the transfer function of an HPF can be drawn eas-
ily using the asymptotic lines. This time, the asymptotic line with a slope
+20n dB/decade passing through (fc, 0 dB) is drawn to indicate the response
below the cutoff frequency.

Example 4

Let us design a fifth-order Butterworth high-pass-filter for a cut-off frequency
of fc=15 MHz for source and load impedances of R=50 Ω. We can use either
L1 − C2 − L3 − C4 − L5 topology or C1 − L2 − C3 − L4 − C5 topology. Again,
the second one (shown in Fig. 6.6(b)) is preferable since it uses smaller number
of inductors. Using the n = 5 values in Table 6.1 and R=50 Ω we find

C1 = C5 =
1/0.618

2π · 50 · 15 · 106
= 343 pF,

C3 =
1/2.0

2π · 50 · 15 · 106
= 106 pF, L2 = L4 =

(1/1.618)50

2π · 15 · 106
= 0.330 µH

This filter attenuates the signal at 7.5 MHz (one octave lower than fc=15 MHz)
by 6×n=6×5=30 dB.

Band-pass-filter

Band-pass-filters have a passband with a center frequency of fo and 3-dB cut-off
frequencies of f1 and f2. The bandwidth of the filter is ∆f = f2 − f1. It is
composed of series and parallel LC branches resonating at fo. They have a
transfer function of the following form:

PL

PA
=

1

1 + (fo/∆f)2n(f/fo − fo/f)2n
(6.24)

For f → 0, we have PL/PA → (f∆f/f2
o )

2n, and for f → ∞, we have PL/PA →
(∆f/f)2n defining the asymptotes. PL/PA = 0.5 = −3 dB when the denomi-
nator is equal to 2. This occurs at frequencies(

f

fo
− fo

f

)
= ±∆f

fo
or f1,2 =

√
f2
o +

∆f2

4
± ∆f

2
(6.25)

Note that we have f1f2 = f2
0 .
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We use the following procedure to design an nth-order Butterworth band-
pass-filter of center frequency fo and a 3-dB bandwidth of ∆f for load and
source impedances of R:

1. Design an nth-order low-pass-filter using ∆f as the cutoff frequency.

2. For every shunt capacitor, Ci, add a parallel inductor of value

Li =
1

(2πfo)2Ci
(6.26)

3. For every series inductor, Li, add a series capacitor of value

Ci =
1

(2πfo)2Li
(6.27)

The transfer function of first-, second-, and third-order band-pass-filters with
a normalized bandwidth of ∆f/fo = 0.5 are plotted in Fig. 6.7 along with the
asymptotes at low and high frequencies.
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Figure 6.7: Transducer power gain of band-pass-filters with ∆f/fo = 0.5 as a
function of normalized frequency.

An approximate transfer function of a BPF can be drawn using the following
steps:

1. Plot the points (f1,−3 dB), (fo, 0 dB) and (f2,−3 dB)

2. Draw the high-frequency asymptote with a slope of −20n dB/decade pass-
ing through (∆f, 0 dB) point.
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3. Draw the low-frequency asymptote with a slope of +20n dB/decade pass-
ing through (f2

0 /∆f, 0 dB) point.

4. Join the points and asymptotes to get an approximate transfer function.

Note that for narrow-band filters, the asymptotes can be used to find the ap-
proximate transfer function values instead of the full expression of Eq. 6.24, for
f/fo > 10 or forg f/fo < 0.1.

Example 5

Let us design a third-order band-pass-filter centered at f0=28 MHz with a band-
width of ∆f=5 MHz for RS = RL=50 Ω. We first design a low-pass-filter with
n=3 using C1 − L2 − C3 topology:

C1 = C3 =
1.0

2π · 50 · 5 · 106
= 637 pF and L2 =

2.0 · 50
2π · 5 · 106

= 3.20µH

Now we add parallel inductors L1 and L3 and a series capacitor C2 with values
found from the resonance condition at 28 MHz, Eq. 5.4 (page 184);

L1 = L3 =
25330

282 · 637
= 0.0510µH = 51 nH, C2 =

25330

282 · 3.2
= 10.0 pF

A schematic of this filter is given in Fig. 6.8. We find −3 dB frequencies from

RS

RLC1

L2

C3

+
Vin

C2

L1 L3

Figure 6.8: 3rd order BPF.

Eq. 6.25, f1=25.61 MHz and f2=30.61 MHz. The filter attenuates input signal
by 20× 3 = 60 dB at f=50 MHz (one decade higher than ∆f=5 MHz), and at
f=15.68 MHz (one decade lower than f2

o /∆f = 282/5=156.8 MHz.

6.2.2 Chebyshev filters

An nth order Chebyshev filter is another polynomial filter seeking to have a
transducer power gain of

GT =
PL

PA
=

1

1 + ε2T 2
n(f/fc)

(6.28)

where Tn is the Chebyshev polynomial� of nth order, ε specifies the passband
ripple, and fc is the cutoff frequency at the passband ripple. The first few

�Invented by Russian Mathematician Pafnuty Lvovich Chebyshev (1821–1894).
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n b1 b2 b3 b4 b5 b6 b7 b8

3 0.6292 0.9703 0.6292
4 0.7129 1.200 1.321 0.6476
5 0.7563 1.305 1.577 1.305 0.7563
6 0.7814 1.360 1.690 1.535 1.497 0.7098
7 0.7969 1.392 1.748 1.633 1.748 1.392 0.7969
8 0.8073 1.413 1.782 1.683 1.853 1.619 1.555 0.7334

Table 6.2: Table of prototype element values in Chebyshev low-pass-filters with
passband ripple of 0.01 dB (ε = 0.0480).

n b1 b2 b3 b4 b5 b6 b7 b8

3 1.228 1.153 1.228
4 1.303 1.284 1.976 0.8468
5 1.339 1.337 2.166 1.337 1.339
6 1.360 1.363 2.239 1.456 2.097 0.8838
7 1.372 1.378 2.276 1.500 2.276 1.378 1.372
8 1.380 1.388 2.296 1.522 2.341 1.493 2.135 0.8972

Table 6.3: Table of prototype element values in Chebyshev low-pass-filters with
passband ripple of 0.2 dB (ε = 0.2171).

Chebyshev polynomials can be written as

T0(x) = 1

T1(x) = x

T2(x) = 2x2 − 1

T3(x) = 4x3 − 3x

T4(x) = 8x4 − 8x2 + 1

T5(x) = 16x5 − 20x3 + 5x

T6(x) = 32x6 − 48x4 + 18x2 − 1

This filter gives a sharper cutoff (a better rejection outside the passband) than
the Butterworth filter, but it has a ripple in the passband. The design method
is the same as that of the Butterworth filter using the prototype values given
in Tables 6.2 or 6.3. Filter characteristics are shown for several n values in
Figs. 6.9 and 6.10.

Example 6

Let us design a 5.-order 0.2 dB ripple Chebyshev low-pass-filter for a cutoff
frequency of fc=20 MHz for source and load impedances of RS = RL=300 Ω.
We use C1 − L2 − C3 − L4 − C5 topology. Using the n = 3 values in Table 6.3
and R=300 Ω we find

C1 = C5 =
1.339

2π300 · 20 · 106
= 35.5 pF and L2 = L4 =

1.337 · 300
2π20 · 106

= 3.19µH
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Figure 6.9: Chebyshev LPF response with 0.01 dB ripple for different n values.
At f = fc, the filters have 0.01 dB loss.

C3 =
2.166

2π300 · 20 · 106
= 57.5 pF

At f = fc, the filter has an attenuation of 0.2 dB. We can estimate the perfor-
mance of the filter at 40 MHz using Fig. 6.10: Since fc =20 MHz, at 40 MHz
(f/fc = 2) the signal is attenuated by 38 dB (voltage is 0.013 times).

6.2.3 Practical aspects of LC filter design

Recall that inductors and capacitors do not behave as they should at frequencies
higher than their self-resonance-frequency. Caution must be exercised while
choosing the components. Their high-frequency response should be carefully
evaluated.

Some types of capacitors work better than others do at higher frequencies.
For example, ceramic NPO capacitors work well at RF frequencies with a high
Q factor. ESR (equivalent series resistor) of capacitors (especially those with
large values) may also limit their performance in filtering applications.

Inductors are generally more expensive and less ideal than capacitors. Hence,
filter topologies using fewer number inductors are usually preferred. Careful
evaluation of the inductor [9–11] in the frequency range of interest must be
done before using it in a filter. Magnetic coupling between the inductors in a
filter can be minimized by placing the inductors perpendicular to each other.

While higher-order filters provide more attenuation than lower-order filters,
it is challenging to get attenuation levels more than 50 dB on the same printed-
circuit-board due to electromagnetic coupling effects between the components.
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Figure 6.10: Chebyshev LPF response with 0.2 dB ripple for different n values.
At f = fc, the filters have 0.2 dB loss.

If higher attenuation levels are desired, electromagnetic shielding of components
is necessary. Shielding is done by conductive or magnetic materials, surround-
ing the component to block the electromagnetic field. Copper or sheet iron is
commonly used as shielding materials. A conductive enclosure is also known as
a Faraday cage.

In band-pass-filters, spurious capacitors limit the performance of floating
series LC circuits. Shunt LC branches should be preferred, wherever possible.

6.3 Impedance matching

We discussed in Section 5.8 that the maximum transfer occurs when the load
impedance is equal to the conjugate of the source impedance. If the condition
is not satisfied, we need to convert the impedance to the required level using a
lossless network.

One such case is the filtering problem we discussed in the previous section.
Another one, and the most common one, is to have maximum power transfer
to the load from a source. Impedance transformation is a fundamental topic in
electronics, and there is a wealth of information on it.

6.3.1 Matching by transformers, narrow-band

We discussed the transformer’s impedance transformation property in Section 5.5.
By choosing the turns ratio correctly, it is possible to transform the impedances
for maximum power transfer.
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There are two approaches to designing RF transformers. If the require-
ments are such that we need the functions of a transformer in a relatively small
bandwidth compared to a center frequency, we design narrowband or resonant
transformers. The idea is simple: if we tune out the magnetizing inductance Lp

(see Fig. 5.21) by a parallel capacitor across the primary terminals as depicted
in Fig. 6.11(a) (or equivalently the secondary terminals), we end up with only
an ideal transformer left at the frequency of interest. So we should choose the
capacitor value from the resonance formula as

C =
1

ω2
oLp

(6.29)

With the magnetizing inductance, Lp, tuned out, the resistance seen from the
input, R, is given by

R =

(
n1

n2

)2

RL (6.30)

This is suitable only over a frequency range limited by the Q of the parallel
tuned circuit. Q is given by

Q =
R

ωoLp
=

(
n1

n2

)2
RL

ωoLp
with a bandwidth BW =

wo

Q
(6.31)

In this case, the value of Lp need not be very large, but is chosen to provide the
necessary bandwidth.

Lp

n1 n2:

RLC

R=(n1/n2)
2RL

(a)

Lp

n1 n2:

RL

(b)

R=(n1/n2)
2RL Lp sufficiently largeC tunes out Lp

Figure 6.11: (a) Narrow-band transformer, (b) wide-band transformer.

Example 7

Design a transformer to transform 20 Ω into 50 Ω at fo=10 MHz. We have a
core with AL=3 nH/turns2.

Referring to Eq. 6.30, we should choose the turns ratio as

n1

n2
=

√
R

RL
=

√
50

20
= 1.58

Let us choose n1 : n2=11:7, since 11/7=1.57. The inductance of the primary
is Lp = n2

1AL=363 nH. We choose a capacitance to tune out the inductance at
10 MHz. Using the resonance formula of Eq. 5.4 on page 184:

C =
25330

102 · 0.363
= 698 pF
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Q factor is given by Eq. 6.31

Q =
R

ωLp
=

50

2π10 · 106 · 363 · 10−9
= 2.2

Hence the transformation will be valid in a band of ∆f=f2 − f1 = fo/Q =
10/2.2 =4.5 MHz. Since f1f2 = 102, we find f1=8 MHz and f2=12.5 MHz.

♦ TRC-11 utilizes the narrow-band transformer matching technique to max-
imize the gain in both transmitter and receiver.

6.3.2 Matching by transformers, wide-band

The second approach is wideband transformer design. In this case, we require
|jωLp| to be significantly larger than the effective impedance that appears across
it over the frequency range of interest so that Lp is negligible. Since the trans-
formers are usually employed for converting and matching resistances, Lp is
usually chosen such that its reactance at the lower end of the frequency band
is more than four times the effective resistance across it (Fig. 6.11(b)). If ω1 is
the lowest frequency of interest, we should have

ω1Lp ≥ 4

(
n1

n2

)2

RL (6.32)

The turns ratio of the transformer should be chosen as

R =

(
n1

n2

)2

RL (6.33)

While Lp determines the lowest frequency of the impedance transformation,
core loss or interwinding capacitance may limit the upper-frequency limit.

Example 8

Design a transformer to transform the 4 Ω speaker impedance of the heavy-metal
concert given on page 210 to 8 Ω to recover the lost 111 W. We need a wideband
transformation covering the whole audio range (20 Hz to 20 kHz). Hence the
lowest frequency of interest is f1=20 Hz. We have a core with AL=650 nH/T2.

Referring to Fig. 6.11(b), we should choose the turns ratio of the transformer
from Eq. 6.33 as

n1

n2
=

√
R

RL
=

√
8

4
= 1.41

To have a wide-band transformer, from Eq. 6.32 we should choose

Lp ≥ 4

(
n1

n2

)2
RL

ω1
= 4

8

4

4

2π20
= 256 mH

Hence n1=
√

256000/0.65=628. We find n2=445.
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Example 9

Design a transformer to transform 10 Ω into 50 Ω between 4 MHz to 15 MHz.
We have a core with AL=3 nH/turns2.

Referring to Fig. 6.11(b), we should choose the turns ratio as

n1

n2
=

√
50

10
= 2.24

To have a wide-band transformer, from Eq. 6.32 we should choose

Lp ≥ 4
50

10

10

2π4 · 106
= 7.96 µH

Let Lp=8 µH>7.96 µH, hence n1=
√
8000/3=51.6. Choose n1=52 turns. We

find n2=23.2. Since n2 is not close to an integer, let us choose the better pair
of 56:25 (56/25=2.24).

6.3.3 Matching by resonant circuits

The simplest way of narrow-band impedance matching is using series RLC cir-
cuits. We discussed the equivalence of the series and parallel RLC circuits and
the amplification property of tuned circuits in Section 5.3. The same prop-
erty provides a means of matching. Fig. 5.8 is repeated here as Fig. 6.12, for
convenience.

C

LS

RSRP

(a)

CRS
RP

LS

(c)

RP C
LP

(b)

Figure 6.12: (a) L-section to transform a smaller resistor RS to a larger resis-
tance RP , (b) equivalent circuit, (c) L-section to transform a larger resistance
RP to a smaller resistance RS .

Referring to Fig. 6.12(a), a smaller resistance RS in series with the inductor
is transformed into a larger resistance RP

RP = (Q2 + 1)RS with ωo =
1√

LSC(1 + 1/Q2)
and Q =

ωoLS

RS
(6.34)

There is a transformation ratio of Q2 + 1. The equivalent circuit is shown in
Fig. 6.12(b), where

LP = LS

(
1 +

1

Q2

)
(6.35)
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This transformation is valid within the 3 dB bandwidth of the tuned circuit.
This impedance transforming LC circuit is called an L-section. The same circuit
used backward (see Fig. 6.12(c)) transforms a larger resistance RP into a smaller
resistance RS :

RS =
RP

Q2 + 1
with ωo =

1√
LPC

and Q =
RP

ωoLP
(6.36)

Example 10

Design a resonant matching circuit to convert 10 Ω to 50 Ω at fo=10 MHz.
Referring to Fig. 6.12(a), RS=10 and RP=50. Hence

Q2 + 1 =
RP

RS
=

50

10
= 5

Hence Q=2. Since Q = ωoLS/RS , LS = 2 · 10/(2π107)=318 nH and LP =
397 nH. Using the resonance formula, we find the value of capacitance:

C =
25330

102 · 0.397
= 637 pF

This transformation is valid in the range of ∆f = f2−f1 = fo/Q=10/2=5 MHz.
Since f1f2 = 102, we find f1=7.8 MHz and f2=12.8 MHz.

6.3.4 Impedance inverters

Impedance inverters are narrow-band impedance transformers. An impedance
inverter circuit is depicted in Fig. 6.13(a). The circuit has a “T” form with
two equal series reactances and a parallel reactance of the same magnitude but
opposite sign. Another inverter form is shown in Fig. 6.13(b), where the circuit
is in “π” form. +jX can be implemented by inductors, while −jX can be
realized by capacitors. In addition to the inverter types shown in Fig. 6.13, it is
possible to change the sign of X to interchange the positions of inductors and
capacitors, generating two more inverter types.

jX jX

-jX ZZI

jX

ZZI -jX

(b)(a)

-jX

Figure 6.13: Impedance inverters.

When an impedance Z is connected to one end of the first inverter, the
impedance seen at the other end, ZI , becomes

ZI = jX +
1

1/(−jX) + 1/(jX + Z)
=

X2

Z
(6.37)
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This functional circuit is used for many matching and filtering purposes. For
example, it can convert a series resonant circuit into a parallel resonant circuit.
Assume that Z is the impedance of a series resonant RLC circuit:

Z = jωL+R+
1

jωC
(6.38)

ZI becomes

ZI =
X2

jωL+R+ 1
jωC

(6.39)

The corresponding admittance, YI ,

YI =
1

ZI
=

jωL+R+ 1
jωC

X2
= jω

L

X2
+

R

X2
+

1

jωCX2
(6.40)

This is the admittance of a parallel RLC circuit with a capacitance of value
L/X2, a conductance of R/X2, and an inductance of CX2.

Example 11

Design an impedance inverter to convert Z=5 Ω to ZI=50 Ω at 28 MHz.
From Eq. 6.37, we have X2=ZIZ=50·5=250 or X=15.8 Ω. We can use

either of the inverters shown in Fig. 6.13. To generate +jX we use an inductor
of value 15.8/(2π28 · 106)=89.8 nH. To generate −jX, we use a capacitor of
value 1/(15.8 · 2π28 · 106)=359 pF.

Example 12

Let us transform a resistance of RL=50 Ω to R=100 Ω at a frequency of 16 MHz
using different techniques.

Using a transformer we need a turns ratio of n1/n2 =
√
100/50 =

√
2. If

we can make the primary magnetizing inductance large enough compared to
R = 100Ω, it is a wide-band transformation (as in Fig. 6.11(b)). Setting ωLp =
4R = 400, we find Lp = 3.97µH. Using a toroidal core with AL=4.5 nH/turns2,
we need n1=30 turns, which is a reasonable number. Hence n2=21 turns.

Alternatively, we can make a resonant transformer with less number of
turns: Choose n1=14 turns and n2=10 turns. In this case, Lp = ALn

2
1 =

4.5 · 142=882 nH. To tune out the primary inductance, we need a capacitor of
value C = 25330/(162 · 0.882)=112 pF in parallel with it (as in Fig. 6.11(a)).

As a third method, we can use an L-section as in Fig. 6.12. We choose
RS = 50Ω, and we need to have RP = 100Ω. So, we have Q2+1 = RP /RS = 2,
and we find Q = 1. Since Q = ωLS/RS = 1, we determine LS=497 nH
and LP=994 nH. The capacitor of the L-section is found from the resonance
condition: C = 25330/(162 · 0.994)=99 pF.

As a fourth method, we use one of the impedance inverters of Fig. 6.13.
We choose X =

√
RLR =

√
50 · 100=70.7. Hence, the series inductor to gen-

erate +jX is L = 70.7/ω=703 nH and the shunt capacitor to generate −jX is
C=140 pF.
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6.3.5 Band-pass-filter design using inverters

To avoid the performance limitation of series LC branches (see Section 6.2.3)
in filters, an inverter can be utilized to convert them to parallel LC branches
if the filter has a relatively small bandwidth. Consider the second-order band-
pass-filter with center frequency ωo and bandwidth ∆ω shown in Fig. 6.14(a).
The component values for the Butterworth filter are

L1 C1

C2 L2

L1 C1

L1
C1 L1 C1 C1 C1

(a) (b)

(d)(c)

ZI

Zp

RR

R R

jX jX

-jX

X=R

Le

Ce

R ωo
1/Rωo Le

/

R ωo/

ZI

Figure 6.14: (a) Second-order band-pass-filter, (b) inverter with a shunt LC
branch, (c) equivalent second-order band-pass-filter, (d) simplified second-order
band-pass-filter.

C1 =
1.4142

∆ωR
, L2 =

1.4142 ·R
∆ω

, L1 =
1

ω2
oC1

, C2 =
1

ω2
oL2

Now, consider the impedance seen at the input of inverter of Fig. 6.13(b) with
X = R shown in Fig. 6.14(b). We can write

ZI =
X2

Zp
=

R2

Zp
= R2

(
1

jωL1
+ jωC1 +

1

R

)
=

1

jωC2
+ jωL2 +R

since C2 = L1/R
2 and L2 = C1R

2. Therefore, the inverter and shunt L1C1 com-
bination in Fig. 6.14(b) is equivalent to the series L2C2 branch in Fig. 6.14(a).
We show the equivalent filter in Fig. 6.14(c). Since there are two inductors in
parallel, we can combine them into one inductor. We find

Le = L1 ∥ R

ωo
=

RL1

R+ ωoL1
and Ce =

1

Rωo
(6.41)

The final filter shown in Fig. 6.14(d) is nearly the same as the original filter near
the passband where the inverter approximation holds. It has a better perfor-
mance at lower frequencies, but its performance degrades at higher frequencies.
A comparison of the transfer functions of the original second-order BPF with
∆f = 0.2fo, and the approximate BPF is given in Fig. 6.15.
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Figure 6.15: Comparison of transfer functions of a second-order Butterworth
band-pass-filter with ∆f = 0.2fo and approximate BPF using the inverter.

Example 13

Let us design a second-order band-pass-filter (with no series branches) centered
at fo=16 MHz with a bandwidth of ∆f=1 MHz for RS = RL=50 Ω. We
first design a low-pass-filter with n=2 and bandwidth of 1 MHz using C1 − L2

topology:

C1 =
1.41

2π · 50 · 1 · 106
= 4.5 nF

Now we add a parallel inductor L1 to C1 from the resonance condition at
16 MHz, using the resonance formula of Eq. 5.4 (page 184):

L1 =
25330

162 · 4500
= 0.22µH = 220 nH

To get rid of the series branch, we use an inverter with X=50 Ω. We need
an inductor of L = R/ωo = 50/(2π16 · 106) =497 nH, and a capacitance of
Ce=199 pF. Since Le is the parallel combination of two inductors

Le =
RL1

R+ ωoL1
=

220 · 497
220 + 497

= 152 nH (6.42)

Hence we determined all the values in Fig. 6.14(d).
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6.4 Crystal filters

Timing circuits in watches, computers, or fixed frequency oscillators in commu-
nication equipment require very sharp filter characteristics at a precise resonant
frequency. Tuned circuits made of inductors and capacitors cannot meet very
tight frequency selectivity requirements. Q of electrical circuits is limited to
about 100. So it is challenging to build a filter with a very small bandwidth us-
ing just inductors and capacitors. Moreover, the values of inductors may change
by the presence of conductors or magnetic materials nearby. For example, the
value of an inductor may change as your hands get closer to the inductor. So
the stability of the narrow-band filter or a resonator built from an inductor is
not acceptable.

On the other hand, mechanical systems can have much higher Q values, and
they do not get affected by the presence of a conductor or a magnetic mate-
rial nearby. For frequency-selective application requiring high Q and stability,
mechanical devices made of PZT ceramics and quartz crystals are used [12].
PZT ceramics are electrostrictive, and quartz crystals are piezoelectric materi-
als. They can convert the electric field applied to them into mechanical vibration
within their body. Mechanical filter devices are usually made by evaporating
electrodes on small plates of these materials. Applying a voltage across these
electrodes produces an electric field in the material. The device converts this
field into mechanical vibration at the same frequency as the applied voltage.
The plate dimensions define the mechanical resonance frequencies. When the
frequency of the applied field matches one of these resonance frequencies, the
impedance that appears across the electrodes makes a dip. The resonance fre-
quency is very stable, and the losses are very small, limited to frictional activity
during particle motion.

Quartz crystals

Quartz crystals have a very high mechanical Q, in the order of 100,000, due to
their orderly single-crystal structure. A poly-crystalline material does not have
such a high mechanical Q. Since quartz is also piezoelectric, the mechanical
resonance directly influences the electrical properties, and hence quartz displays
a similarly high electrical Q.

The schematic symbol of a crystal is given in Fig. 6.16(a). There are many

(a) (b)

rs

Ls

Cs

Co

Figure 6.16: Quartz crystal (a) symbol and (b) equivalent circuit.

modes of resonance in a quartz crystal. Each mode has a fundamental resonance
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frequency and its overtones. We are interested in the fundamental resonance fre-
quency of only one mode of vibration. The equivalent circuit of a quartz crystal
in the vicinity of this frequency is also given in Fig. 6.16(b). These equivalent
circuit models the impedance at the (electrical) terminals of the quartz crystal.
The mechanical properties of quartz and the dimensions of the plate, determine
all three of the series circuit elements. Ls is proportional to the mass of the
plate, and Cs is determined by the compliance (inverse of stiffness) of quartz
crystal. Resistance rs models the friction losses during vibration. The only
inherently electrical component is Co, which is the capacitance between the
electrodes of quartz crystal.

The model in Fig. 6.16(b) has two resonance frequencies:

fs =
1

2π
√
LsCs

(6.43)

and

fp =
1

2π
√

LsCsCo/(Cs + Co)
. (6.44)

fs is the resonance frequency of the series rsLsCs branch and the impedance
decreases down to rs at this frequency (in parallel with Co). fp, on the other
hand, is the parallel resonance frequency, where the inductance Ls resonates
with the series combination of Cs and Co, i.e., CsCo/(Cs + Co). We note that
fs < fp.

Ls ranges from a few mH to over 10 mH for quartz crystals at 15 MHz. Cs

is in the order of fF (femto Farad, 10−15F) and rs is in the range of a few ohms
to a few tens of ohms. Co is an electrical component, the clamp capacitance,
usually a few pF. We are interested in the frequencies in the vicinity of series
resonance.

6.4.1 Band-pass-filter using quartz crystals

Suppose we design a second-order band-pass-filter with a center frequency of
ωo and bandwidth ∆ω. We use two identical quartz crystals resonant at ωo

to make a Butterworth band-pass-filter. The method described below can be
extended to higher-order filters using more quartz crystals.

Consider the circuit in Fig. 6.17(a). Each quartz crystal resonant at ωo

provides a series resonance circuit. To employ techniques we use in design-
ing Butterworth filters, we need one series and one parallel resonant circuit.
We employ an impedance inverter to invert one of the series resonant circuits
into a parallel resonant circuit, as in Section 6.3.4. To satisfy the bandwidth
requirement, we choose the external circuit parameters X, R1, and R2 appro-
priately. The inverter inverts the series circuit provided by XT2 and R2 into a
parallel tuned circuit. The equivalent circuit of the resulting filter is shown in
Fig 6.17(b).

We must set all circuit parameters such that the filter becomes a second-order
Butterworth BPF. As we discussed in Section 6.2.1, we first design a low-pass-
filter with ∆ω as the cutoff frequency, given in Fig. 6.17(c). The termination
resistors, Ro, of the low-pass-filter prototype in Fig. 6.17(c) are equal. From the
inverter formula of Eq. 6.37, we have

Ro = R1 + rs =
X2

R2 + rs
(6.45)
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impedance inverter
(a)

(b)

Vin

Vo
jX jX

-jX

Vin

Vo

Ls Cs
rs

R1

R2

R1

Ls Cs
rs

Ls/X
2CsX

2
Vin

Vo

Ls

rsR1

Ls/X
2

(c)

XT1 XT2

XT1

+

X2/(R2+rs)
X2/(R2+rs)

L1

C2

Ro

Ro =

=

Figure 6.17: (a) Two-crystal ladder filter, (b) the equivalent circuit after inver-
sion operation, (c) the low-pass-filter prototype.

From the low-pass-filter relations of Eq. 6.16 and 6.17, we get

L1 =
1.4142Ro

2π∆f
= Ls and C2 =

1.4142

2π∆fRo
=

Ls

X2
(6.46)

where the factor 1.4142 is taken from the Butterworth table for n = 2. Com-
bining the equations in Eq. 6.46, we find

C2 =
Ls

X2
=

L1

X2
=

1.4142R0

2π∆fX2
=

1.4142

2π∆fRo
or X2 = R2

o (6.47)

Hence we determine the value of X and Ro as follows:

X = Ro =
2π∆fLs

1.4142
(6.48)

Since the crystals are already resonant at the center frequency, the band-pass-
filter design is complete. The termination resistors, R1 and R2 should be chosen
as

R1 = R2 = Ro − rs =
2π∆fLs

1.4142
− rs (6.49)

Now let us examine how we realize the inverter. The inverter should have a
shunt capacitor (Ci) and two series inductors (Li), to provide −jX and jX at
fs, respectively. The circuit is depicted in Fig. 6.18(a). Here the inverter circuit
components are related as

X = 2πfsLi =
1

2πfsCi
(6.50)

We can ignore and get rid of the series inductors since they are in series with
very large inductors of the crystals. Ignoring the series inductors pull the center
frequency of the band-pass-filter very slightly. The resulting circuit is given in
Fig. 6.18(b).
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Li Li

Ci
X1 X2

impedance inverter
(a)

Ci
X1 X2

(b)

Vin Vin

Vo Vo
R1

R2

R1

R2

Figure 6.18: Impedance inverter for two-crystal BPF, (a) Proper inverter, (b)
Actual circuit with the inductors ignored.

Example 14

Suppose we would like to design a second-order BPF centered at fo=16 MHz
with a bandwidth of ∆f=10 kHz. If we design this filter using inductors and
capacitors, we end up with a very large inductor and a tiny capacitor in the series
branch, and a tiny inductor and a very large capacitor in the shunt branch. Let
us use two series 16 MHz crystals with an inverter in between. The crystal has
Ls=15 mH and rs = 15Ω. From Eq. 6.48, we find

X = Ro = R1+rs = R2+rs =
2π · 104 · 15 · 10−3

1.4142
= 666Ω or R1 = R2 = 651Ω

The inverter inductance of value Li=6.6 µH is ignored in comparison to
Ls=15 mH. The inverter capacitor is given by

Ci =
1

2πfoX
=

1

2π · 16 · 106 · 666
= 14.9 pF

We can reduce the bandwidth ∆f of the filter by a factor of two if we choose
R1 = R2 = 318Ω and Ci =29.8 pF.

Example 15

Design a third-order BPF centered at fo=8.00MHz with a bandwidth of
∆f=20 kHz. We have quartz crystals with fs=8 MHz, rs=10 Ω and
Q=100,000.

For the third-order BPF, we need three crystals and two inverters, as shown
in Fig. 6.19. From quartz crystal data, we find Ls = Qrs/ωs = 19.9 mH. For

Li Li

Ci
X1 X2

impedance inverter

Vin

Vo
R1

R2

Li Li

Ci

impedance inverter

X3

Figure 6.19: Impedance inverter for three-crystal BPF.
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n=3, the prototype filter values are 1, 2, 1. To match the inductance of the
crystal X1 to the first inductance, L1, of the LPF we should have

Ls = 19.9 mH = L1 =
Ro

2π∆f
=

Ro

2π20 · 103
(6.51)

HenceRo=2.5 kΩ. To match the inductance of the crystalX2 to the capacitance,
C2, of the bandpass filter, we have

C2 =
2

2π∆fRo
=

2

2π20 · 103 · 2500
= 6.37 nF =

Ls

X2
(6.52)

Hence X = Ro/
√
2=1770 Ω. Hence Li = 35 µH, and Ci=11.2 pF. Note that

the third inductance of the BPF, L3 = L1, is matched to Ls automatically by
going through two inverters. We can ignore Li, since it is small compared to Ls.
The termination resistors should be selected as R1 = R2 = Ro − rs = 2490 Ω.

♦ TRC-11 has a two-crystal band-pass-filter operating at 15 MHz.

6.5 SAW filters

Surface-acoustic-wave (SAW) filters are the most commonly used band-pass-
filters in the frequency range 20 MHz to 1000 MHz. They have interdigital
surface-acoustic-wave transducers consisting of metal fingers deposited on a
piezoelectric crystal like lithium niobate. The input signal is converted to a
surface-acoustic-wave travelling on the surface of the crystal. The acoustic sig-
nal is converted back to an electrical signal at the output. SAW filters can act
like band-pass-filters of very high order (n > 12). They can be produced at a
low cost with an accurately defined center frequency. All modern TV sets and
mobile phones have SAW filters as their band-pass-filters.
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6.6 Examples

Example 16

We have a source with RS = 50 Ω and a load impedance as given in Fig. 6.20(a).
Design a matching circuit to maximize the power transfer to the 2 Ω load resistor
for ω = 2π28 · 106. We have a core with AL = 2.3 nH/T2.

50Ω
2Ω

+

sin(ωt)
?

(a)

50Ω
2Ω

+

sin(ωt)

L

C1 C2

(b)

500pF500pF

50Ω
2Ω

+

sin(ωt) 500pF

(c)

Lp

L2

C3

Rs

Rs

Rs

50Ω
2Ω

+

sin(ωt) 500pFC3

Rs

(d)

n1 : n2

Figure 6.20: (a) Source and load impedances for Example 16, (b) an impedance
inverter used as a matching circuit, (c) an L-section used as a matching circuit,
(d) a transformer used as a matching circuit.

Solution

Many possibilities for the matching circuit exist. As a first method, let us
use an impedance inverter. We prefer to use a “π” type impedance inverter
as depicted in Fig. 6.20(b), since there is already a shunt capacitor as part of
the load impedance. We find X2 = 50 · 2 = 100, or X = 10. Hence C1 =
1/(10 · 2π28 · 106) = 568 pF and L = 10/(2π28 · 106) = 56.8 nH obtained with
5 turns on the core. We also have C2 + 500 = 568, hence C2 = 68 pF.

As a second method, let us utilize an L-section. First, we tune out the
capacitor with a parallel inductor of value

Lp =
25330

282 · 500
= 65 nH

This can be obtained with (squeezed) 5 turns. We need an L-section with
Q2 + 1 = 50/2 = 25 or Q = 4.9. Since Q = ωL2/Rs, we get L2 = 55.7 nH (5
turns) and C3 = 560 pF.

As a third method, we use a transformer whose secondary inductance tunes
out the 500 pF capacitor. The turns ratio of the transformer must be

n1

n2
=

√
50

2
= 5

Hence the primary has 25 turns, and the secondary has 5 turns.
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Example 17

Design a band-pass-filter between the source and load resistor of 500 Ω. 3-dB
frequencies are 1 kHz to 5 kHz. We would like to reject the 500 Hz and 9.5 kHz
by at least 20 dB.

Solution

Since ∆f = 5000− 1000 = 4000, using Eq. 6.25 we write

f1 = 1000 =

√
f2
o +

∆f2

4
− ∆f

2
=

√
f2
o +

40002

4
− 4000

2

and find fo = 2236 Hz. Since −20 dB means a power ratio of 0.01, using Eq. 6.24
for f = 500 Hz, we get

0.01 >
PL

PA
=

1

1 + (2236/4000)2n(500/2236− 2236/500)2n

To find the order of the filter, we try different n values: For n = 2, PL/PA = 0.03
and for n = 3, PL/PA = 0.006 < 0.01. For f = 9.5 kHz, we get

0.01 >
PL

PA
=

1

1 + (2236/4000)2n(9500/2236− 2236/9500)2n

For n = 3, PL/PA = 0.008 < 0.01.
Therefore, we need a BPF with n = 3 as in Fig. 6.8 of page 230. We first

design a LPF with fc = ∆f = 4000 Hz: C1 = C3 = 79.6 nF, and L2 = 40 mH.
We find the inductors and capacitor to resonate at 2236 Hz as L1 = L3 =
63.6 mH and C2 = 127 nF.

Example 18

The OPAMP circuit shown in Fig. 6.21 is a first-order band-pass-filter. Find the
center frequency and the bandwidth in terms of the given component values.

−

+

RC

C

R1

R2
VoV1

V2V3
Vin

Figure 6.21: OPAMP band-pass-filter.
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Solution

Assuming that the OPAMP is not saturated, we have V1 = V2 = 0. We can
write the node equation for V3 as

V3 − Vin

R1
+

V3

R2
+

V3 − Vo

1/jωC
+

V3

1/jωC
= 0

Writing KCL at V2

−V3

1/jωC
+

−Vo

R
= 0 or V3 = − Vo

jωRC

We combine the equations above to eliminate V3:

H(ω) =
Vo

Vin
=

R

2R1

jω2R1R2C

(R1 +R2 − ω2R1R2RC2) + jω2R1R2C

The real part of the denominator becomes zero when

ωo =
1

C

√
R1 +R2

R1R2R

where the highest gain is obtained

H(ωo) =
R

2R1

The 3-dB frequencies can be found easily if we assume a high-Q and equate the
magnitudes of the real and imaginary parts of the denominator:

R1 +R2 − ω2R1R2RC2 = ±ω2R1R2C

Solving the quadratic equation, we find the 3-dB frequencies as

ω1,2 =

√
ω2
o +

(
1

RC

)2

∓ 1

RC

Hence the bandwidth of the filter is

∆ω =
2

RC

For example, with C = 10 nF and R = 2 k, ∆f = 16 kHz. With R1 = 1 k and
R2 = 10 Ω, we get fo = 113 kHz and a unity gain at the center frequency.

Example 19

The OPAMP circuit shown in Fig. 6.22 is a band-stop-filter or a notch filter.
It can be used to eliminate unwanted frequencies in a signal. Find the notch
frequency and the 3-dB bandwidth of the filter.
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VoV1

V2
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V4

R

CC

R/2

2C

Vin

Figure 6.22: Notch filter.

Solution

We write the node equations for V3, V4 and V1 as

V3 − Vin

R
+

V3

1/jω2C
+

V3 − V1

R
= 0 (6.53)

V4 − Vin

1/jωC
+

V4

R/2
+

V4 − V1

1/jωC
= 0 (6.54)

V1 − V3

R
+

V1 − V4

1/jωC
= 0 or V4 =

1 +X

X
V1 −

1

X
V3 (6.55)

where we used X = jωRC to simplify the notation. From Eq. 6.53, we get

V3 =
X

2 + 2X
(Vin + V1) (6.56)

Combining Eqs. 6.54 and 6.55, we find

V3 = − X2

2 + 2X
Vin +

2 + 4X +X2

2 + 2X
V1 (6.57)

Equating Eqs. 6.56 and 6.57, we get

X(Vin + V1) = −X2Vin + (2 + 4X +X2)V1 (6.58)

After rearrangement, we reach at

Vo

Vin
=

V1

Vin
=

1 +X2

1 + 4X +X2
=

1− ω2R2C2

(1− ω2R2C2) + jω4RC
(6.59)

since the OPAMP is configured as a unity gain buffer and Vo = V1. The transfer
function approaches unity when ω → 0 and when ω → ∞. The notch occurs
when the numerator is zero:

ωo =
1

RC
(6.60)

To find the 3-dB frequencies, we set the magnitude of the transfer function to
1/
√
2: ∣∣∣∣ Vo

Vin

∣∣∣∣2 =
(1− ω2R2C2)2

(1− ω2R2C2)2 + (ω4RC)2
=

1

2
(6.61)
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The solution of the quadratic equation gives

ω1,2

ωo
=

√
9∓

√
80 or

ω1

ωo
= 0.236 and

ω2

ωo
= 4.23 (6.62)

Example 20

Consider the circuit of Fig. 6.23(a) where the reactances are specified at f =
20 MHz. Find the input impedance Zin at the same frequency, f , using the
impedance inverter formula, rather than series/parallel combination of impedances.

Zin 12

j50

-j40

j40

Zin 12-j40

j40 j40 j10

(b)(a)

Figure 6.23: (a) Circuit for Example 20, (b) Modified circuit for simple analysis.

Solution

To make the circuit look like an impedance inverter we separate the rightmost
inductor into two inductors or two reactances j50 = j40 + j10, as shown in
Fig. 6.23(b). Hence the effective load impedance of the inverter becomes Zout =
12 + j10. We can find the input impedance, Zin, using the impedance inverter
formula with X = 40:

Zin =
X2

Zout
=

402

12 + j10
= 78.7− 65.5

Example 21

Find Zin for the circuit of Fig. 6.23(a) at 22 MHz.

Solution

The circuit at 22 MHz becomes as shown in Fig. 6.24(a) since the inductive
reactances increase by 10% and capacitive reactances decrease by 10%. We
modify the circuit so that a portion of the circuit becomes an inverter as in
Fig. 6.24(b). We can find the input impedance at 22 MHz using an impedance
inverter with X=36.4 and a series inductive reactance.

Zin = j7.6 +
36.42

12 + j18.6
= 32.4− j42.6
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Zin 12 Zin 12

(b)(a)

j44 j55

-j36.4 -j36.4

j36.4 j18.6j36.4j7.6

Figure 6.24: (a) Circuit for Example 21, (b) Modified circuit for simple analysis.
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6.7 Problems

1. Find the amplitude and phase of the voltage at the output of the circuit
given in Fig. 6.25 when the input voltage is 2 cos(2π16 · 106t) volts. Find
the amplitude of the current flowing through the capacitor.

Figure 6.25: Circuit for Problem 1

2. Design a 3rd order Butterworth low-pass-filter with a minimum number of
inductors, whose cutoff frequency is 3 kHz, and termination impedances
are 1 K.

3. Find the amplitude and phase of the voltage at the output of the circuit
given in Fig. 6.26 when the input current is 10 cos(1.82 · 108t) mA. Find
the amplitude of the current flowing through the inductor.

Figure 6.26: Circuit of Problem 3

4. Find the 3-dB cutoff frequency of the low-pass-filter given in Fig. 6.27.

Figure 6.27: Circuit for Problem 4

5. Design a 3rd order Butterworth high-pass-filter with a minimum number of
inductors, whose cutoff frequency is 3 MHz, and termination impedances
are 75 Ω.
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6. Design a Butterworth LP filter that has an attenuation of at most 1 dB
at 16 MHz and an attenuation of at least 20 dB at 32 MHz (first, find
the minimum number of components). Find reactive element values for a
filter with a minimum number of inductors. Finally, check the attenuation
at specified frequencies for your filter.

7. Design a Butterworth band-pass-filter with a center frequency of 30 MHz
and a 3-dB bandwidth of 3 MHz, such that its attenuation at 60 MHz is
at least 20 dB.

8. Assume we have an ideal transformer with a primary/secondary winding
ratio of 1:2. What impedance appears across the primary if a 300 Ω is
connected across the secondary?

9. Assume we wind up an excellent real transformer with no loss and with
a 1:2 primary/secondary winding ratio. The primary inductance is 1 µH.
Find the impedance across the primary at 10 MHz when 300 Ω is connected
across the secondary. What is the phase shift between the primary voltage
and primary current?

10. Calculate the transformer current and the magnetizing current for the
transformer and load given in Problem 9 when the transformer is driven
by a voltage of 2∠0ovolts at 10 MHz.

11. A real transformer has a primary inductance of 1 µH, and a turns ratio
of 12:24. Assuming that the transformer has no loss and no leakage,
calculate the impedance across the primary at 28 MHz when a 560 Ω load
is connected across the secondary. What is the phase shift between the
primary voltage and primary current?

12. Find the value of parallel capacitance required across the primary to tune
out the primary inductance at 28 MHz for the transformer and load given
in Problem 11. Find the impedance across the primary at 28 MHz. Cal-
culate the phase shift between the primary voltage and primary current
when this capacitance is connected across the primary.

13. Match the 200 Ω load resistor to the source side for maximum power
transfer at 16 MHz, using T38-8/90 (AL=20 nH/turns2) in the circuit
shown in Fig. 6.28. Determine H(ω) = Vout(ω)/Vs(ω) at 16 MHz.

Figure 6.28: Circuit for Problem 13

14. Match a 200 Ω resistor to 50 Ω source resistance using an L-section at
5 MHz. Find the frequency range of the match.
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15. Design a band-pass-filter centered at 10 MHz with a bandwidth of 20 kHz
using two quartz crystals resonant at 10 MHz. The quartz crystals have
Q = 80, 000 and rs=10 Ω.

16. Find the input impedance, Zin, of the circuit in Fig. 6.29 using the
impedance inverter formula.

Zin
10

-j30

j30 j40

-j60-j60

j60

Figure 6.29: Circuit for Problem 16



Chapter 7

DIODES IN
TELECOMMUNICATIONS

We used diodes to rectify the AC voltage and convert it to a DC supply voltage
in Chapter 2. We employed the self-operated switch property of diodes in that
application. When the potential across the diode exceeds the threshold voltage,
the diode becomes almost a short circuit. Otherwise, it remains open. This use-
ful property of diodes is exploited in many applications in telecommunications
electronics [13].

R

D

+
vIF(t)

(a)

R

D

+
vIF(t)

vo(t)

(b)

C

vhw(t)

Figure 7.1: (a) Half-wave rectifier, (b) envelope detector.

7.1 Envelope detector

With a sinusoidal modulating signal vm(t) = Vm cos(2πfmt) and a carrier signal
of Vc cos(2πfIF t), the AM (amplitude modulated) signal at the output of the
second IF amplifier is

vIF (t) = Vc

(
1 +

Vm

Vc
cos(2πfmt)

)
cos(2πfIF t) (7.1)

The waveform of this signal is plotted in Fig. 7.2(a) for Vc = 1, Vm = 0.7, and
fIF=20 kHz, fm = 1 kHz. The modulation index (see Eq. 1.6 at page 7) of this
signal is m = Vm/Vc=0.7.

AM demodulation is the act of separating the information signal vm(t) from
its carrier Vc cos(2πfIF t). The simplest and oldest method of doing this is called
envelope detection. In an envelope detector, the signal is half-wave rectified and
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then low pass filtered. We employ the rectification property of diodes in envelope
detection. A half-wave rectifier is shown in Fig. 7.1(a). It is composed of an
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Figure 7.2: AM Waveform, vIF (t) (upper) for fIF=20 kHz, fm = 1 kHz, half-
wave rectified AM waveform, vhw(t) (middle) and envelope detector output,
vo(t) (lower).

ideal diode and a resistor.
The half-wave rectified AM signal, vhw(t), using this rectifier is shown in

Fig. 7.2(b). The diode rectifies the AM signal, and only positive half cycles
appear across the resistor. The mechanism is similar to the power rectification
problem in Chapter 2, except in this case, the amplitude varies with respect to
time.

Fig. 7.1(b) shows the schematic of an envelope detector where a capacitor is
added in parallel with the resistor. The resulting signal output, vo(t) is depicted
in Fig. 7.2(c) where the envelope detector output looks like the original sine wave
of vm(t) with a DC shift. vo(t) follows the envelope with some ripple as in the
case of power rectification.

Here, we cannot increase the capacitance, C, hence the time constant RC,
indefinitely to reduce the ripple. The time constant, RC, must be chosen such
that the capacitor can discharge fast enough and its voltage can follow the
maximum negative slope of the envelope, −Vm2πfm. Since the slope of decay-
ing exponential Vc exp(−t/RC) at t = 0 is given by −Vc/RC, we should have
Vc/RC > Vm2πfm, or

RC <
Vc

2πfmVm
(7.2)



7.1. ENVELOPE DETECTOR 257

Otherwise, the detected envelope signal suffers from what is known as failure
to follow distortion or diagonal distortion. This upper limit on RC causes some
ripple on the detected waveform, particularly during the up-sloping phases of
the envelope, as seen in Fig. 7.2(c).

We used a very low carrier frequency (fIF = 20 kHz) to demonstrate the
function of the envelope detector and to exaggerate the ripple. In a real case,
the carrier frequency is much higher. Fig. 7.3 shows vhw(t) and vo(t) for fIF =
100 kHz. In this case, the ripple is smaller, and the envelope detector output
is approximately the same as the original sine wave of vm(t) except for the DC
shift. The ripple is negligible with a carrier frequency in the MHz range.

The highest ripple occurs when the AM signal amplitude is maximum (Vc +
Vm). If fm ≪ fIF and 1/RC ≪ fIF , the peak-to-peak ripple in the output can
be estimated from the peak-to-peak ripple formula of Eq. 4.7 for the half-wave
rectifier:

Vr = (Vc + Vm)
1

RCfIF
(7.3)

where the voltage drop across the envelope detector diode is ignored.
Note that the DC shift amount (or the average value) at the envelope detec-

tor output is the same as the amplitude of the carrier, Vc. The DC shift voltage
can be used to determine the carrier amplitude of the AM signal.
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Figure 7.3: Half-wave rectified AM waveform, vhw(t), (upper) for fIF=100 kHz,
fm = 1 kHz and envelope detector output, vo(t) (lower).

7.1.1 Real diodes in envelope detectors

Real diodes have a threshold voltage Vo, which has an adverse effect on the
detected signal. Assume that we replace the ideal diode in Fig. 7.1 with a
real diode. Let us model the diode by a piecewise linear model of Fig. 4.3 on
page 136. The operation of the half-wave rectifier of Fig. 7.1 with a real diode
is shown in Fig. 7.4(a).

The diode conducts only after the voltage across its terminals exceeds the
threshold voltage Vo. Vo can be taken approximately as 0.6 V, in which case
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the detected envelope of a vIF (t) of, for example, 2 Vpp amplitude is severely
distorted, as illustrated in Fig. 7.4(b).
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Figure 7.4: Half-wave rectified AM waveform, vhw(t), (upper) for fIF=100 kHz,
fm = 1 kHz for a real diode with Vo=0.6 V and the corresponding envelope
detector output, vo(t) (lower).

We overcome this problem by passing a small current through the diode at
all times. Consider the circuit in Fig. 7.5(a) (where the diode is detecting the
positive envelope of AM signal). Cc and L form a resonant circuit at the carrier
frequency. Cc also prevents DC current from flowing through the input AC
source. The DC current source Idc sets the average diode current to Idc at all
times, assuring that the diode is on even when the carrier amplitude approaches
zero. Hence, the output voltage vo(t) can follow the positive envelope for all
input voltage levels.

R
D

vIF(t)

vo(t)

C

+

Cc

Vo

+

Idc
Idc

(a)

D
vIF(t)

vo(t)

C

+

Cc

Idc

(b)

Vdc

R

L

CB
CB

RB

Figure 7.5: Envelope detector using a real diode with biasing.

This preconditioning of a diode by forcing a DC current to flow through it is
called biasing. We implement this solution using the circuit given in Fig. 7.5(b).
The DC current source is implemented by a large resistor RB connected to a
positive voltage supply, Vdc. The value of Idc is (Vdc − Vo)/(RB +R).
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We employ a resonant circuit at the carrier frequency composed of Cc and L.
CB is a very large capacitor providing an AC ground. The resonant circuit has a
band-pass-filter action eliminating frequencies other than the carrier frequency.
It also boosts the signal level by the Q factor of the resonant circuit.

The output time constant RC is chosen sufficiently small in such a way to
follow the envelope variation at the highest AM modulation frequency.

7.2 Automatic gain control

vIF (t) is a scaled version of the amplitude of the RF signal delivered by the
antenna. The received signal amplitude may vary over a large range depending
on how far the transmitter is. The change in amplitude can be compensated by
changing the receiver’s gain. If the received signal is small, the gain must be set
high. On the other hand, if the transmitter is very close by, the received signal
can be very high. In this case, there may even be saturation in the receiver
amplifiers due to the very large input signal. A deep saturation may cause the
envelope information in the AM signal to disappear and the envelope detector
output to become zero. Therefore, it is desirable to reduce the gain of the
receiver in such a way that the second IF amplifier is not saturated.

Wireless communication channels have peculiar properties, particularly at
HF band. One such effect is called fading. The received signal amplitude occa-
sionally changes in time rather slowly due to propagation mechanisms in the HF
band. Two signals may arrive at the receiver antenna using different paths. The
path difference of these two signals may create either constructive or destructive
interference in the received signal. This variation usually has a period of more
than a few tens of seconds. When listening to the receiver output under fading,
one feels that the voice slowly fades out and then comes back. It is, of course,
possible to compensate for this effect by changing the gain manually. However,
this can be disturbing.

Therefore, it is desirable to have an automatic gain control where the receiver
detects the input signal’s level and automatically adjusts its gain to supply a
stable output signal amplitude.

Recall that the envelope detector output is the same as the instantaneous
amplitude of the carrier’s envelope. The average carrier amplitude can be found
using a low-pass-filter to filter the envelope detector output. The cutoff fre-
quency of the low-pass-filter should be low enough to eliminate the modulation
signal altogether. For example, a corner frequency of less than 1 Hz may be
suitable. This low-pass-filtered and slowly varying signal is proportional to the
incoming signal amplitude. This signal can be used to vary the gain of the
receiver. If the average carrier amplitude is large, we should decrease the gain.
On the other hand, if it is small, the gain must be increased. For this purpose,
we need a circuit element whose resistance changes in relation to a voltage.

7.2.1 PIN diode

A PIN diode is a special semiconductor diode. PIN refers to the semiconductor
structure of the diode: These diodes have three layers of semiconductor material,
p-type, intrinsic (undoped), and n-type, as opposed to commonly used two-
layers, p-type and n-type, in p-n junction diodes. Because of its structure, it
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is a very slow acting diode. Once the diode is turned on, it does not turn off
quickly. Conversely, it does not turn on easily if the diode is off. Although it is
a very slow diode, it has a very small junction capacitance making it suitable for
high frequencies. (p-n junction rectifier diodes like 1N4007 are also very slow,
but they have a very large junction capacitance.)

PIN diode acts like a regular diode for low-frequency signals (for signals lower
than about 100 kHz) with highly nonlinear characteristics. At high frequencies
(higher than about 5 MHz), it acts like a linear resistor even for large signal
amplitudes. This high-frequency resistance is inversely proportional to the DC
or low-frequency current passing through the diode. If the DC current is not
present, the PIN diode acts as an open-circuit at high frequencies even if the
instantaneous high-frequency voltage across the diode is a large positive voltage.
A short burst of high-frequency positive voltage is not enough to turn on the
diode.

On the other hand, the PIN diode acts as a resistor with a small value (a
few ohms), when there is a positive DC current through it. This is true even if
the instantaneous high-frequency voltage may be several volts negative.

With these interesting properties, a PIN diode can be used as the element
we need for the automatic gain control mechanism.

7.2.2 Automatic gain control using a PIN diode

Consider the automatic gain control (AGC) circuit shown in Fig. 7.6. The
envelope detector output vo(t) goes to a low-pass-filter (LPF) composed of R73

and C71. The cutoff frequency of this LPF is smaller than the lowest AM
modulation frequency. This means that the LPF’s output is proportional to the
average carrier amplitude.

LPF’s output is fed to the positive input of an OPAMP for comparison with
a set point voltage at the negative input of the OPAMP. A large resistance is
placed in the feedback path of the OPAMP, causing it to act like a high-gain
amplifier. The OPAMP output determines the current for a shunt PIN diode
placed between the two IF amplifier stages. Note that a zener diode (D72) is
placed in series with a resistor (R75) between the OPAMP output and the PIN
diode. The OPAMP output voltage should be larger than the zener voltage to
generate any current in the PIN diode.

If the average carrier amplitude is higher than the set point, the OPAMP
output voltage increases, causing an increase in the PIN diode current. With
an increased current, the PIN diode’s RF resistance becomes smaller, reducing
the gain of the IF amplifier. This action continues until the two input pins of
the OPAMP have the same voltage, i.e., the average carrier amplitude equals
the set point voltage.

Conversely, if the average carrier amplitude is lower than the set point, the
OPAMP output becomes zero, providing no current to the PIN diode. In this
case, the IF amplifiers have the highest possible gain.

In summary, the AGC circuit provides the highest IF gain if the average
carrier amplitude is less than the set point. For higher carrier amplitudes, the
IF gain is adjusted to give a constant IF amplifier output voltage.

This AGC network is an example of a negative feedback system. The feed-
back system adjusts the gain of the IF amplifier in such a way to keep the
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Figure 7.6: Automatic gain control circuit.

average IF amplifier output voltage nearly at the same level. As a consequence,
the saturation of the IF amplifier is also avoided.

7.3 Signal presence indicator

In a receiver circuit, it is desirable to have an indicator showing the presence
of a signal at the input frequency. The existence of the PIN diode current is a
good sign for this purpose. When the OPAMP output is larger than the zener
voltage, PIN diode current is present. So the same OPAMP output can be used
to turn on an LED. A resistor, R76, in series with the LED limits the current.
So, the LED turnd on as soon as the AGC circuit begins to limit the IF amplifier
gain.

♦ TRC-11 has one signal diode in the amplitude demodulator, one PIN diode
to change the gain of the IF amplifier, and LED as the signal presence
indicator, and one LED as power indicator.
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7.4 Problems

1. The AM signal 2[1 + 0.7 cos(2π103t)] cos(2π28 · 106) is fed to an envelope
detector as in Fig. 7.1(b) with R=1 kΩ. Find the maximum value of
capacitor, to avoid failure to follow distortion.

2. If RC = 1/(2πfm) in the circuit of Fig. 7.1(b), estimate the maximum
ripple on the detected envelope, if the modulation index is m = 1. Assume
that fm ≪ fIF . What is the minimum ripple? Is there any failure-to-
follow distortion?

3. Determine and sketch the waveform at the output for the circuits given in
Fig. 7.7. Assume that the diode is ideal.

Figure 7.7: Circuits for Problem 3

4. In Fig. 7.8, v(t) is 0.5 cos(ωt) for both circuits. Assume that the diode can
be modelled by the approximate model of Fig. 4.3(c) and (d) on page 136,
with V0=0.7 V. What is vout(t) for both circuits, if I = 0? Find the
minimum value of I for which there is an undistorted replica of v(t) at the
output. For both circuits, find vout(t) for this value of I. What is the value
of I such that time varying part of vout(t) is exactly half wave rectified (but
scaled, of course) form of v(t)? (Hint: First find the Thévenin equivalent
circuit, comprising both sources, across the detector circuit)

Figure 7.8: Circuits for Problem 4

5. Consider the 28 MHz amplifier shown in Fig. 7.9 built using an OPAMP.
RF resistance of the PIN diode can be varied between 10 Ω to 1000 Ω,
while the DC current source IDC is varied between 10 mA to 0.1 mA.
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Find the gain, |Vout/Vin|, of the amplifier at 28 MHz, for IDC=10 mA
and 0.1 mA. Assume that the reactance of 1 nF capacitor is negligible at
28 MHz.

−

+

510

470

511nF

Vin Vout

IDC

PIN

Figure 7.9: RF amplifier circuit for problem 5

6. Find the value of the resistor in the LED drive circuit of Fig. 4.17(c) for a
voltage source of Vs=5 V, when a white-light power LED with a current
of 1.5 A is to be connected. With 1.5 A current, the voltage drop across
the LED is 3.1 V. If the light conversion efficiency of the LED itself is
100 lumens/W, what is the light conversion efficiency of the LED with
the series resistor?



Chapter 8

FREQUENCY
CONVERSION

8.1 Mixers

As discussed in Chapter 1, mixers are nonlinear devices with three ports to
perform the multiplication process. They can be built from diodes, transistors
or other nonlinear devices. The concept of mixing is easily understood with a
switch mixer.

8.1.1 Switch mixer

Consider the mixer shown in Fig. 8.1, where we have sinusoidal input signals
for both RF and LO inputs of the mixer.

vRF (t) = A sin(ωRF t) and vLO(t) = sin(ωIF t) (8.1)

The switch is opened and closed at the frequency of vLO. The switch is
closed if vLO(t) ≥ 0, and it is open if vLO(t) < 0. Therefore, we can write the

fLO

fRF

LO

Switch

vRF(t)

vIF(t)RF

IF

vLO(t)

Figure 8.1: A switch mixer.

output signal, vIF (t), in terms of the input signal, vRF (t), and the switching
function, s(t), as

vIF (t) = vRF (t)s(t) (8.2)
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where the switching function s(t) is a unity-amplitude square-wave given by

s(t) =

{
1 if vLO(t) ≥ 0

0 if vLO(t) < 0
(8.3)

In Chapter 1, we showed that a square wave can be written as the sum of
sinusoids. From Eq. 1.4 in page 5, we write

s(t) =
1

2
+

2

π
sin(ωLOt) +

2

3π
sin(3ωLOt) +

2

5π
sin(5ωLOt) + . . . (8.4)

Hence Eq. 8.2 can be written as

vIF (t) = A sin(ωRF t)

(
1

2
+

2

π
sin(ωLOt) +

2

3π
sin(3ωLOt) + . . .

)
(8.5)

Using trigonometric identities, we can arrive at

vIF (t) =
A

2
sin(ωRF t) +

A

π
[cos(ωLO − ωRF )t− cos(ωLO + ωRF )t]

+
A

3π
[cos(3ωLO − ωRF )t− cos(3ωLO + ωRF )t] + . . . (8.6)

The IF output of the mixer contains sinusoids at many different frequencies,
ωRF , ωLO −ωRF , ωLO +ωRF , 3ωLO −ωRF , 3ωLO +ωRF , etc. albeit at reduced
amplitude.

8.1.2 Conversion gain of a mixer

An important parameter in the evaluation of mixers is the conversion gain. The
conversion gain is defined as

Gc =
Po

Pi
(8.7)

where Po is the total power delivered to a matched load at IF output and Pi

is the total available input power at the RF input. This expression is similar
to the gain of an amplifier, except here the input and output frequencies are
different.

While passive mixers built from diodes may have a conversion gain less than
unity, many mixers made in the form of integrated circuits have a conversion
gain larger than one.

♦ TRC-11 utilizes one mixer in the integrated-circuit form, with a conversion
gain larger than one.

8.2 Amplitude modulator

Suppose that a tuned RF amplifier is used to amplify an RF signal. Since the
amplifier is tuned, no distortion in the output occurs even when the input signal
level is too high. With a large input signal, the peak value of the output RF
signal is determined by the supply voltage of the tuned amplifier rather than
the input signal amplitude. If the supply voltage of that RF amplifier is varied,
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Figure 8.2: Amplitude modulator circuit. The input signal of the tuned RF
amplifier should be so large that the output magnitude is determined by the
supply voltage.

the amplified signal follows the variation (see Fig. 8.2. This principle is used in
TRC-11 to obtain an amplitude modulator.

The supply voltage modulation is achieved using a PNP BJT circuit, the
input of which is controlled by the modulation signal at audio frequency. The
collector of the BJT is connected to the supply voltage of an RF amplifier
through an RF bypass capacitor. The bypass capacitor selected such that it
acts like a short circuit at RF frequency but it is an open circuit at the audio
frequencies. Hence the supply voltage of the tuned RF amplifier varies exactly
like the modulation signal.

8.3 Oscillators

An oscillator is a sinusoidal signal generator. Frequency is determined by a
resonant circuit inside the oscillator. The resonator can be built, for example,
from LC circuits or quartz crystals.

Every resonator has some loss. If this loss can be compensated by an active
circuit, a continuous sinusoidal signal can be obtained. Depending on the oscil-
lator structure, some oscillators provide a square-wave output, rather than the
sinusoidal signal.

It is possible to obtain an oscillator by using a positive feedback between the
output and input of an amplifier using a resonator. The resonator determines
the frequency of oscillation while the amplifier provides the continuity of the
oscillation.

The quality of an oscillator is determined by the purity and stability of the
output signal. Oscillators using high-Q resonators usually have high quality out-
put signals. Oscillators using LC circuits as their resonators typically produce
low quality signals, since Q of electrical circuits are limited. Oscillators using
quartz crystals are called crystal oscillators and they provide a well-defined and
stable frequency output signal. Many laboratory signal generators use crystal
oscillators as their reference frequency. If higher stability is desired, crystals
may be placed in temperature-controlled ovens to get frequencies that are more
precise.
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8.3.1 Oscillator concept

We discussed feedback in Section 3.9.1 and noted that we always use negative
feedback for amplification. In oscillators, we need positive feedback.

Consider the parallel RLC circuit given in Fig. 8.3(a), with a current source
connected in parallel. We assume that the current source i(t) contains many
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Figure 8.3: Oscillator concept: (a) RLC circuit driven by a wide-band current
source, (b) amplification, (c) positive feedback, (d) current source removed.

sinusoidal components at all frequencies and its amplitude is very small. The
noise in electronics is such a signal. Only the current component in the vicinity
of ωo = 1/

√
LC generates a voltage v1(t) across the tank circuit. The amplitude

of v1(t) is very small also. We expect to observe v1(t) as

v1(t) = V1 cos(ωot) (8.8)

where V1 is very small. If an OPAMP with a gain of A is connected to this
node, v1(t) is amplified by the factor A as shown in Fig. 8.3(b).

The supply voltage levels limit the output voltage swing of OPAMPs. When
the amplified signal amplitude AV1 approaches to positive supply voltage, V +,
or to the negative supply voltage, V − = −V +, the output waveform gets dis-
torted. We obtain a clipped waveform. The OPAMP is said to be saturated
(recall Eq. 3.48 on page 105). If the input voltage amplitude increases further,
the output waveform approaches to a square wave.
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At this stage, let us assume that the gain is not large enough to saturate
the amplifier. When a feedback path to the positive input is provided by means
of a resistor R2 as shown in Fig. 8.3(c), v1(t) is modified. Initially, an additive
sample from output increases v1(t) to

v1(t) = V1 cos(ωot) +
R1

R1 +R2
AV1 cos(ωot) (8.9)

The additive component has an amplitude of R1/(R1 + R2)(AV1) which is
much larger than the signal directly created by i(t). This component alone
drives the amplifier deep into saturation, since AR1/(R1 + R2)(AV1) ≫ V +.
We immediately have a square wave at the output as v2(t). The peak-to-peak
amplitude of this wave is 2V +. This waveform is also shown in Fig. 8.3(c).

When we have a square wave at the output, the feedback signal is also a
square wave. However, the tank circuit picks the fundamental component of
this square wave, producing a v1(t) as

v1(t) = V1 cos(ωot) +
R1

R1 +R2
b1V

+ cos(ωot) (8.10)

From Eq. 1.4 of page 5 we know that b1 = 4/π is the coefficient of the funda-
mental component in a square wave. Since the output of the amplifier cannot
change any more, the circuit operation is stabilized with a square wave at its
output. The tank circuit determines the frequency of this signal.

The input signal v1(t) is predominantly the feedback signal. If we remove
the current source from the circuit, the output is still a square wave. Neither
v2(t) nor v1(t) are affected, as shown in Fig. 8.3(d).

Practically, we never include an explicit current source unit to start the os-
cillation, because it is not necessary. There is always noise in electronic circuits,
creating the current needed for the start of the oscillation. The current source
is always there.

It is possible to deduce from the above discussion that if

R1

R1 +R2
A = 1 (8.11)

we have a sustained oscillation, once it starts. In this case, the output waveform
is sinusoidal and amplifier works in linear region all the time. This condition,
i.e., the product of amplifier gain and the feedback ratio being unity is called
the Barkhausen oscillation criterion.

In the circuit of Fig. 8.3, we have the amplitude limiting mechanism of
saturating amplifier. Since the fundamental component of the saturated output
is b1V

+, the peak-to-peak amplitude, V1pp, of sinusoidal signal v1(t) is always

V1pp = 2
R1

R1 +R2
b1V

+ =
8

π

R1

R1 +R2
V + (8.12)

As long as the gain is large enough to keep the amplifier in saturation with
this input, the oscillation is sustained. The larger gain of the amplifier helps
oscillations to start easily. To make sure that the oscillation starts, the feedback
ratio R1/(R1 +R2) and the gain A must be such that

R1

R1 +R2
A > 1 (8.13)
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We note that it is possible to replace LC circuit of the oscillator with a quartz
crystal operating at its parallel resonance frequency (see Eq. 6.44 in page 242).
In this case, we get a very stable oscillator since the resonance frequency is
determined by the quartz crystal.

Example 1

Suppose we would like to design an oscillator as in Fig. 8.3(d) at fo=12 MHz
using LM7171, an OPAMP with a gain-bandwidth product of GBW=200 MHz.
We have supply voltages of V +=15 V and V − = −15 V.

The gain A of the OPAMP at 12 MHz is GBW/fo=16.6. Using Eq. 8.13,
we write

R1

R1 +R2
>

1

16.6
= 0.06

LM7171 data sheet recommends a feedback resistor R2=510 Ω. Therefore, we
need to choose R1 > 32.5 Ω. Let us choose R1=330 Ω (comfortably larger than
the limit). To get a Q=10, we choose

Q =
R1 ∥ R2

ωoL
= 10 or L =

R1 ∥ R2

2πfo10
=

200

2π · 12 · 106 · 10
= 265 nH

From the resonance condition at 12 MHz, we find the capacitor value as

C =
25330

122 · 0.265
= 664 pF

From Eq. 8.12, the peak-to-peak signal amplitude, V1pp is given by

V1pp =
8

π

R1

R1 +R2
V + =

8

π

330

330 + 510
15 = 15

In the real circuit, V1pp will be less than 15 Vpp, since the saturation voltages
of the LM7171 are about ±13 V rather than ±15 V.

8.3.2 Negative resistance

Negative resistance concept is another way of analyzing oscillator circuits. Con-
sider the OPAMP circuit shown in Fig. 8.4(a). Let us find the input impedance
Zin assuming that the OPAMP is not saturated. Hence we have V1 = V2 = Vin.
From the voltage divider relation and from the node equation at V1, we write

V2 =
R1

R1 +R2
Vo and Iin =

V1 − Vo

R3
(8.14)

Rearranging and combining the equations, we find

Vo =

(
1 +

R2

R1

)
V2 and Iin = −Vin

R2

R1R3
(8.15)

Therefore, we find the input impedance Zin as

Zin =
Vin

Iin
= −R1R3

R2
(8.16)
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+
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+
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R

(a) (b)

Zin

Figure 8.4: (a) OPAMP circuit with a negative input resistance, (b) an oscillator
built with the negative resistance.

a negative quantity. This negative resistance can be used to compensate the
loss of a resonator to form an oscillator. Fig. 8.4(b) shows an RLC circuit
resonator connected to the negative resistance input of the OPAMP. If the
negative resistance is chosen to be equal to the parallel resistance R of RLC
circuit,

R = −Zin =
R1R3

R2
(8.17)

the parallel combination of R and −R will yield an open-circuit:

R ∥ Zin = R ∥ (−R) =
−R2

R−R
⇒ ∞ (8.18)

In this case, an oscillation at the resonance frequency of LC can be maintained
indefinitely. In practice, it is difficult to satisfy the precise equality of a negative
resistance to a positive resistance. To guarantee an oscillation, we choose the
values such that

R1R3

R2
< R (8.19)

There are many subtle subjects in the theory of oscillators, such as frequency
and amplitude stability, phase jitter, etc. We leave these topics to advanced
texts.

8.3.3 Colpitts Oscillator

Consider the circuit shown in Fig. 8.5(a) where a transconductance amplifier is
shown in the dashed box. As shown in page 104, a transconductance amplifier
has a voltage input and current source output. The amount of the current in the
current source is determined by the input voltage. The multiplier factor, gm, is
known as the transconductance. Two impedances, Z1 and Z2 are connected as
shown. Let us find the input impedance Zin:

Zin =
Vb

Ib
(8.20)

Using KVL, we write
Vb = IbZ1 + Ve (8.21)
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+
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Zin
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C2

Vb Ve
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Ib

L

(b)(a)

Z1 Z2

Figure 8.5: (a) A transimpedance amplifier with the feedback impedance Z1

and the load impedance Z2. , (b) Colpitts oscillator.

The voltage Ve can be found using KCL as

Ve = (gmVbe + Ib)Z2 = (gm(Vb − Ve) + Ib)Z2 (8.22)

Solving for Ve, we find

Ve =
gmVb + Ib
1 + gmZ2

Z2 (8.23)

Substituting this value in Eq. 8.21 and solving for Vb, we find

Vb = (gmZ1Z2 + Z1 + Z2) Ib (8.24)

Hence the input impedance is found as

Zin =
Vb

Ib
= gmZ1Z2 + Z1 + Z2 (8.25)

Now, suppose that the feedback element Z1 and the load element Z2 are capac-
itors, C1 and C2. For this particular case, Z1 = 1/(jωC1) and Z2 = 1/(jωC2).
For Zin, we get

Zin =
Vb

Ib
= − gm

ω2C1C2
+

1

jω

C1 + C2

C1C2
(8.26)

Note that the real part is negative and the imaginary part is due to the series
combination of the capacitors C1 and C2. The negative resistance can be utilized
to obtain an oscillator.

When the input of the circuit is connected to an inductance as shown in
Fig. 8.5(b), we get a Colpitts oscillator invented by American engineer Edwin
Colpitts (1872–1949) in 1918. The negative resistance compensates the loss of
the inductor and the circuit produces a sustained oscillation. The oscillation
frequency is given by

fo =
1

2π

√
C1 + C2

LC1C2
(8.27)

If a quartz crystal is connected instead of the inductor, the resulting circuit
is known as Colpitts crystal oscillator. In that case, the oscillation frequency is
determined essentially by the series resonance frequency of the crystal.
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Example 2

Consider a Colpitts oscillator (as in Fig. 8.5(b)) to operate at 28 MHz. If
C1=33 pF, C2=33 pF, and gm=0.005 S, find the value and minimum Q of the
inductor.

From Eq. 8.26, we find Zin = −148 − j344. Hence we must have L =
344/(2π28 · 106) = 1.96 µH. If the series resistance of L satisfies r ≤ 148 Ω, the
oscillation will be maintained. Hence we should have Q ≥ ωL/r = 2.32.

8.3.4 Pierce Oscillator

A commonly used oscillator circuit depicted in Fig. 8.6(a) is known as Pierce
oscillator. It was invented by George W. Pierce (1872–1956) in 1923. A dig-
ital inverter is used as the amplifying element of the oscillator. The feedback
resistance Rf assures that the inverter acts like a high gain inverting amplifier.
The capacitors C1 and C2 and the quartz crystal form the feedback circuit,
providing the extra phase shift necessary for oscillation [14]. The total gain of
the oscillation loop should be equal to unity, with zero (or −2π) phase shift.
Therefore, the oscillation condition can be written as

vi
vo

(−A) = 1 (8.28)

Fig. 8.6(b) shows the equivalent circuits of the quartz crystal and the amplifier

Rf

C1 C2
X

(a)

C1 C2

Ls Csrs

Co

(b)

Ro

vi

-Avi

vo =

Rf

Figure 8.6: (a) Pierce oscillator using a digital inverter with crystal feedback,
(b) its equivalent circuit.

with an output resistor of Ro. The amplifier introduces a −π phase shift. To find
the oscillation frequency, we need the find the frequency at which the feedback
circuit provides a phase shift of −π. For this purpose, we should find the transfer
function, vi/vo of the feedback circuit from the output to input using phasors.
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Example 3

Consider the Pierce oscillator built using a digital CMOS inverter integrated
circuit, 74HC04, and a 16 MHz quartz crystal. The 14-pin integrated cir-
cuit has six inverters inside. The oscillator uses only one of the inverters,
which has a propagation delay of 6 ns with a supply voltage of 6 V. We have
C1=C2=12 pF, Rf=1 MΩ and Ro=100 Ω. The 16 MHz quartz crystal has
parameters Ls=15 mH, rs = 15 Ω, Cs=6.6 fF, Co=5 pF.

The amplitude and phase of the transfer function, vi/vo, of the feedback
circuit is plotted in Fig. 8.7. The series and parallel resonant frequencies are
about 15.999 MHz and 16.006 MHz, respectively. 6 ns delay of the inverter
corresponds to a phase shift of (6 ns)(16 MHz)(360o)=34.6o. Hence a phase
shift of −180o − 34.6o = −214.6o is already provided by the inverter. We need
to find the frequency where the feedback network has −360o − (−214.6o) =
−145.4o = −2.54 rad phase shift. We see that this feedback circuit provides
a phase shift of −2.54 rad between fs and fp near 15.9992 MHz, where the
amplitude is 12.2 dB. Since the gain of the inverting amplifier is definitely larger
than −12.2 dB, the oscillation condition is easily satisfied at this frequency. We
note that it is possible to shift the oscillation frequency slightly by changing the
values of C1 and C2.
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Figure 8.7: The amplitude and phase of the transfer function, vi/vo, of the
feedback circuit of Example 3 Pierce oscillator.

♦ There are two oscillators in TRC-11. The first one is the local oscillator
that generates a signal at 12.00 MHz, which is a Colpitts crystal oscil-
lator as shown in Fig. 8.8. Here, SA602A is an integrated circuit acting
as a transconductance amplifier necessary for oscillation. We have the
capacitors of Colpitts oscillator as C1 = 39 pF and C2 = 18 pF.
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The second oscillator is also a Colpitts crystal oscillator at 27 MHz gen-
erating the transmitter frequency of transmitter with C1=47 pF and
C2=10 p.

SA602A

OSCA

OSCB

18pF10pF

12MHz
GND

VCC

Osc

Out

100pF

Figure 8.8: The Colpitts oscillator of TRC-11.

8.3.5 Frequency control in oscillators

In the oscillator circuit of Fig. 8.3(d), the frequency determining parameters are
C and L. We must change the value of one of these components, if we want to
vary the frequency. It is possible to use either a variable capacitor or a variable
inductor.

One of the simplest ways of changing the capacitance is to use a semicon-
ductor device called varactor diode (also called varicap diode or tuning diode).
The symbol of the varactor diode is shown in Fig. 8.9(a). Varactor diodes are
used with a reverse bias voltage. The capacitance across the cathode and an-

Figure 8.9: (a) The symbol of a varactor diode, (b) the capacitance variation
of a varactor diode as a function of reverse voltage, (c) a voltage controlled
oscillator built by a varactor.

ode depends on the level of reverse bias voltage. The variation of the diode
capacitance with respect to reverse diode voltage is given in Fig. 8.9(b).
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The circuit in Fig. 8.9(c) delineates the way a varactor diode is used in
a variable frequency oscillator circuit. The potentiometer Rtune, connected
between two supply voltages, control the reverse voltage bias on the diode. The
capacitance Co is a DC block capacitor, preventing a short-circuit of the DC bias
voltage by the inductance L. The large series resistor only serves to isolate the
tuned circuit elements from Rtune, so that the Q of the resonant circuit remains
high. The series combination of diode capacitance and Co appears across the
tank circuit. The total capacitance of the tank circuit becomes

C +
CDCo

CD + Co
(8.29)

Adjusting the potentiometer can now vary the resonance frequency of the tank
circuit. Since the oscillation frequency is determined by a voltage, this circuit
is called a voltage controlled oscillator (VCO).

8.4 Superheterodyne receiver

A good receiver has good selectivity. Selectivity means the ability to select a
signal among many neighboring signals in the frequency spectrum. It requires
a good band-pass-filter. We learned how to build a good band-pass-filter using
quartz crystals. However such filters operate only at a fixed center frequency.
It is very difficult to build band-pass-filters with variable center frequency. Su-
perheterodyne concept explained below gets around this problem.

US engineer Edwin Armstrong (1890–1954) invented the superheterodyne (of-
ten shortened to superhet) concept in 1918 during World War I as illustrated in
Fig. 8.10. This technique is commonly used in today’s receivers: Radio receivers,
TV receivers, satellite receivers, mobile phones. It uses a frequency conversion
technique using mixers. A mixer converts the incoming RF signal to a fixed in-
termediate frequency (IF) where the fixed frequency band-pass-filter is centered.
The mixer achieves the frequency conversion by a multiplication operation. Sup-

BPF IF Amp

LO

Mixer

RF In
vRF(t)

vLO(t)

vIF(t)

Figure 8.10: Superheterodyne concept invented by Edwin Armstrong.

pose the input RF signal is a sinusoidal signal vRF (t) = VRF cos(ωRF t). A vari-
able frequency signal source is the local oscillator (LO). It generates a sinusoidal
signal vLO = VLO cos(ωLOt). The function of the mixer is to multiply these two
signals. The output of the mixer, vIF (t) is

vIF (t) = vRF (t)× vLO(t) = VRFVLO cos(ωRF t) cos(ωLOt) (8.30)

Using trigonometric identities we can write it as the sum of two sinusoids at
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System IF Freq. LO Freq. RF Freq. Image Freq.

AM Radio 455 kHz 990–2155 kHz 535–1700 kHz 1445–2610 kHz
FM Radio 10.7 MHz 77.3–97.3 MHz 88–108 MHz 66.6–86.6 MHz

Table 8.1: IF, LO, RF and image frequencies of some commonly used systems

sum and difference frequencies:

vIF (t) = vRF (t) · vLO(t) =
1

2
VRFVLO[cos((ωRF + ωLO)t) + cos((ωRF − ωLO)t)]

(8.31)
One sinusoid is at the sum frequency of ωRF +ωLO, the other is at the difference
frequency of ωRF − ωLO.

Suppose the BPF is centered at ωIF . If we choose the local oscillator fre-
quency such that ωRF − ωLO = ωIF , then one of the sinusoids at the output
of the mixer will be able to pass through the BPF and get amplified by the IF
amplifier. Hence, the RF signal at the frequency of

ωRF = ωLO + ωIF or fRF = fLO + fIF (8.32)

will be selected and be amplified, while all other signals will be rejected by the
BPF. As an example, let us choose fLO=12 MHz and fIF=15 MHz. In this
case, fRF=27 MHz is the selected frequency.

We note that there is one more RF frequency that can be selected:

fRFi = fIF − fLO (8.33)

since fRFi + fLO = fIF is the frequency of the first sinusoid of Eq. 8.31. This
frequency is called the image frequency. In the example above, the image fre-
quency is at fRFi=3 MHz. To prevent two distinct frequencies to be amplified,
we need to get rid of the image frequency at the RF input before it gets into the
mixer. For this purpose, we use a band-pass-filter to reject the image frequency.
Since the image frequency, fRFi, is far away from the desired fRF , the rejection
can be easily achieved using a simple BPF and it does not have to be a variable
frequency. In the example above, we need to reject 3 MHz while passing 27 MHz
signal.

BPF IF Amp

LO

Mixer

RF In BPF

To reject image
frequency

fRF

fLO

fIF

Figure 8.11: Superheterodyne receiver with image rejection.

Table 8.4 lists the IF, LO, RF and image frequencies for some commonly
used systems.
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8.5 Examples

Example 4

We have a superheterodyne receiver with image rejection as in Fig. 8.11. fRF =
28 MHz, fLO = 27.5 MHz and fIF = 500 kHz. The BPF to reject the image
frequency is depicted in Fig. 8.12(a). The transformer is wound on a core
with AL = 2.1 nH/T2. The antenna is represented with purely resistive source
impedance of 70 Ω. Find the value of Cs to receive at 28 MHz. What is the
image frequency? What is the image rejection in dB?

70Ω

2 : 10

Cs

+
Mixer

IF

LO

1750Ω Cs

+
Mixer

IF

LO

1750Ω

1750Ω

Vin 5Vin

(a) (b)

Ls

Figure 8.12: (a) Image reject filter of a superheterodyne receiver, (b) Compo-
nents transferred to the secondary side.

Solution

The source resistor of 70 Ω and the input voltage source can be transferred to the
secondary side as 70(10/2)2 = 1750 Ω and (10/2)Vin as depicted in Fig. 8.12(b).
Hence a maximum power transfer is achieved since the source resistor is equal
to the load resistor. The inductance of the secondary is Ls = 2.1 ·102 = 210 nH.
We can find Cs to resonate with Ls at 28 MHz using

Cs =
25330

282 · 0.21
= 154 pF

The resulting circuit is a band-pass-filter with n = 1. Comparing with the LPF
prototype, we find from Eq. 6.17 in page 226

∆f =
b1

2πRCs
=

2

2π1750 · 154 · 10−12
= 1.18 MHz

The image frequency is at fRFi = fLO − fIF = 27.5 − 0.5 = 27 MHz. From
Eq. 6.24 of page 228 with n = 1, fo = 28 MHz and f = 27 MHz, we find

PL

PA
=

1

1 + (fo/∆f)2(f/fo − fo/f)2
=

1

1 + (28/1.18)2(27/28− 28/27)2
= 0.25

Hence the rejection of the image frequency is 10 log10(0.25) = −6.0 dB. Note
that it is not good idea to use the asymptotic approximations here, since the
frequency f is very close to the center frequency, fo and f < 0.1fo is not satisfied.

Example 5

Repeat the problem above when fLO = 25 MHz and fIF = 3 MHz.
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Solution

In this case, the image frequency is at fRFi = fLO − fIF = 25 − 3 = 22 MHz.
We find the image rejection as

PL

PA
=

1

1 + (fo/∆f)2(f/fo − fo/f)2
=

1

1 + (28/1.18)2(22/28− 28/22)2
= 0.0074

The rejection of the image frequency is 10 log10(0.0074) = −21.3 dB, obviously
a better rejection value than the value found in the previous example.

Example 6

The OPAMP circuit shown in Fig. 8.13(a) acts like a square-wave oscillator.
Unlike the negative resistance oscillator of Fig. 8.4(b), the OPAMP operates
in the saturated output region. What is the frequency of the square wave, if
V + = V −?

−

+

R

C

R1

R2

V+

V-

v1

v2

V-

V+ vp

vn

vo

v2

v1

T1

T2

vo

v1

Figure 8.13: (a) Square wave oscillator, (b) voltage waveforms.

Solution

Referring to Fig. 8.13(b), at t = 0+, the output voltage is vo = V +. Therefore,
the voltage, v1(0

+), at the positive input terminal of OPAMP is found from the
voltage divider as

v1(0
+) =

R1

R1 +R2
V + = vp

At t = 0+, the voltage, v2, (equal to the capacitor voltage) at the negative input
terminal is assumed to be equal to an unknown voltage v2(0

+) = vn < 0 which
will be determined later.

The capacitor C charges toward V + with a time constant τ = RC. During
the charging period (0 < t < T1) we have v1(t) > v2(t), and hence the output
voltage remains at vo(t) = V + for 0 < t < T1. Using the procedure of page 46,
we write

v2(t) = V + + (vn − V +)e−t/τ for t > 0

When v2(t) exceeds the voltage vp at t = T+
1 , we get v2(T

+
1 ) > v1(T

+
1 ) and the

output voltage jumps to the negative saturation voltage V −. Thus the voltage,
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v1(T
+
1 ), at the positive input terminal of OPAMP becomes

v1(T
+
1 ) =

R1

R1 +R2
V − = vn

Now, the capacitor discharges toward V − with the same time constant τ = RC.
Since we have v1(t) < v2(t), the output voltage remains at vo(t) = V − for
T1 < t < T2. Using the same procedure we arrive at

v2(t) = V − + (vp − V −)e−(t−T1)/τ for t > T1

At t = T+
2 , v2 goes below vn and as a result the output voltage jumps back to

V +, completing the full cycle. We can find T1 using the exponential equations
above:

v2(T1) = vp = V + + (vn − V +)e−T1/τ or T1 = τ ln

(
V + − vn
V + − vp

)
In a similar manner, we find T2:

v2(T2) = vn = V − + (vp − V −)e−(T2−T1)/τ or T2 − T1 = τ ln

(
V − − vp
V − − vn

)
If V − = −V +, substituting the values of vp and vn we get

T1 = τ ln

(
V + − vn
V + − vp

)
= τ ln

(
2R1

R2
+ 1

)
and T2 − T1 = τ ln

(
2R1

R2
+ 1

)
Hence the frequency of the square wave is

f =
1

T2
with T2 = 2RC ln

(
2R1

R2
+ 1

)
We note that this type of OPAMP oscillator is not suitable for frequencies above
100 kHz.

Example 7

The OPAMP circuit depicted in Fig. 8.14 is known as phase shift oscillator.
Find the frequency of oscillation and the conditions for oscillation.

Solution

Assuming that the OPAMP is not saturated, we have V1 = V2 = 0. We write
the node equations for the nodes V3, V4 and V5 as

V3 − Vo

1/jωC
+

V3

R
+

V3 − V4

1/jωC
= 0 (8.34)

V4 − V3

1/jωC
+

V4

R
+

V4 − V5

1/jωC
= 0 (8.35)

and
V5 − V4

1/jωC
+

V5

R
= 0 or V4 =

1 + jωRC

jωRC
V5 (8.36)



8.5. EXAMPLES 280

−

+

C

VoV1

V2

V3

R R R
CC

V4

Rf

V5

Figure 8.14: Phase shift oscillator.

To simplify the notation, we set X = jωRC. Combining Eqs. 8.34 and 8.36, we
get

V3 =
X

1 + 2X
Vo +

1 +X

1 + 2X
V5 (8.37)

Combining Eqs. 8.35 and 8.36, we reach at

V3 =
1 + 2X

X

1 +X

X
Vo − Vo (8.38)

Equating the right hand sides of Eqs. 8.37 and 8.38

X

1 + 2X
Vo +

1 +X

1 + 2X
V5 =

(1 + 2X)(1 +X)−X2

X2
V5 (8.39)

After simplification we get

V5

Vo
=

X3

1 + 5X + 6X2 +X3
=

−jω3R3C3

(1− 6ω2R2C2) + j(5ωRC − ω3R3C3)
(8.40)

From the OPAMP inverting amplifier configuration, we also have

Vo = −Rf

R
V5 (8.41)

To get a sustained oscillation, we set the loop gain to unity using Eqs. 8.40 and
8.41:

−Rf

R

−jω3R3C3

(1− 6ω2R2C2) + j(5ωRC − ω3R3C3)
= 1 (8.42)

Note that if

1− 6ω2R2C2 = 0 or ω =
1√
6RC

(8.43)

the second term of Eq. 8.42 becomes negative real and we obtain

Rf

R

ω2R2C2

5− ω2R2C2
= 1 (8.44)
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So, the oscillation occurs at

ωo =
1√
6RC

if Rf ≥ 29R (8.45)

Since the oscillation requires a relatively high gain of the inverting amplifier
and OPAMPs have a gain-bandwidth product limitation (see page 208), this
oscillator is suitable only at low frequencies.
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8.6 Problems

1. Consider a superheterodyne receiver with fIF=1 MHz and fRF=28 MHz.
(a) Find the image frequency. (b) Design an input band-pass-filter (as
shown in Fig. 8.11) that passes 28 MHz with an attenuation no more than
1 dB and rejects the image signal by at least 40 dB. (Assume that source
and load impedance of the filter is 50 Ω.)

2. Consider the circuit in Fig. 8.15(a). Find the transfer function H(ω) =
V2(ω)/V1(ω). Determine the frequency, ωo, at which ∠H(ωo) = 0, when
R3 = R4 and C3 = C4. What is |H(ωo)| at that frequency?

Figure 8.15: Circuits for problems 2 and 3

3. The circuit shown in Fig. 8.15(b) is called the Wien-bridge oscillator. Max
Wien (1866–1938) invented the Wien bridge. William Hewlett (1913–
2001) of Hewlett-Packard company was the first to build an Wien-bridge
oscillator as the first product of the company. The network shown in
Fig. 8.15(a) provides the positive feedback. The circuit oscillates at the
frequency ωo where ∠H(ωo)=0 (as given in problem 2), if the condition
(1+R2/R1)|H(ωo)| > 1 is satisfied. If R3 = R4 and C3 = C4, what is the
minimum value of R2/R1 so that the circuit can oscillate?

4. Consider a parallel LC circuit with L=320 nH and a resonance frequency
of 28 MHz. A varactor diode is placed in parallel with it. When the
reverse voltage across the varactor diode is changed between 1 to 10 V,
the capacitance of the diode varies between 4 pF to 1.5 pF. Find the new
resonance frequency with the varactor reverse bias at 1 V and at 10 V.

5. A transconductance amplifier with Gf=0.02 S is connected as a Colpitts
oscillator as shown in Fig. 8.16(a). Find the value of the inductance if an
oscillation at 12 MHz is desired, and if C1=10 pF and C2=15 pF. Find
the maximum value of the resistance, r, that still allows an oscillation.

6. Repeat the problem 5, if there is a stray capacitance of Cs=7 pF exists as
shown in Fig. 8.16(b).
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Figure 8.16: (a) Circuit for problem 5, (b) circuit for problem 6.



Chapter 9

ON THE AIR

Danish physicist Hans Christian Øersted (1777–1851) showed in 1820 that a cur-
rent carrying wire creates a magnetic field. The same year, André Marie Ampére
found that two parallel current-carrying wires can attract or repel each other,
depending on the relative direction of the currents. In 1831, Michael Faraday
observed that a moving magnet through a loop of wire can create a current.
Scottish physicist James Clerk Maxwell (1831–1879) was the first to formulate
the relations between electric and magnetic fields in a unified theory. His for-
mulation of 1865 shows that a changing magnetic field creates an electric field,
a changing electric field creates a magnetic field and predicts that the combina-
tion of these fields, called electromagnetic waves, propagate at the speed of light.
Four elegant vector equations* describing this behavior is known as Maxwell’s
equations, which underpins much of the modern technological world. In 1888,
Heinrich Rudolf Hertz confirmed experimentally the existence of electromag-
netic waves predicted by Maxwell.

Antennas convert electrical signals into electromagnetic waves for transmis-
sion, and they also work in the other direction to convert electromagnetic waves
to electrical signals for reception. Antennas are combinations of pieces of con-
ductors of specific lengths and shapes. There are many different types of anten-
nas for numerous applications. More detailed information on antennas can be
found in other books [15–17].

What follows in this chapter is a descriptive theory of electromagnetics and
antennas.

9.1 Antenna concept

In electronic circuits, capacitors, inductors, other components and their inter-
connections are small compared to the wavelength at the frequency used. We
defined wavelength λ as

λ(m) =
300

f(MHz)
(9.1)

Wavelength can also be interpreted as the distance an electromagnetic wave
travels in one full cycle.

*Maxwell’s original formulation of electromagnetic theory contained 20 equations. Oliver
Heaviside reduced the equation count to four.
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When the circuit dimensions are small compared to the wavelength, most
of the electromagnetic energy generated by the circuit is confined to the cir-
cuit. It is either conserved for the desired purpose or converted to heat. When
the dimensions of the components or the interconnections become large (e.g.,
comparable to the wavelength) part of the energy escapes into space in form of
electromagnetic waves. This part of the energy used in the circuit appears as
lost energy to the circuit, whereas it provides a source for the electromagnetic
waves in space.

Antennas are devices, which makes use of this conversion-and-escape mech-
anism to produce radio waves as efficiently as possible.

Radiation from a dipole antenna

A dipole antenna is made up of two pieces of conductor wires or poles aligned
on a straight line with a small isolating gap in between. A dipole is shown in
Fig. 9.1. The generation of electromagnetic waves by the dipole is also shown in
the same figure. When a voltage source Vs is connected to these two conductors

Figure 9.1: Dipole antenna and radio wave generation concept.

across the gap, as shown in Fig. 9.1, an electric field between the entire surfaces
of two conductors is produced due to the potential difference between them.
This field is time varying at the frequency of the source. The electric field is
denoted by letter E and it has units of V/m.

The electric field extends to the entire space, but its strength decreases as
the observation distance from the dipole increases. The electric field is strongest
near the gap.

The two conductor surfaces constitute a distributed capacitance across the
terminals at which the voltage source is applied. This phenomenon is depicted
in Fig. 9.2(a). The current Is supplied by the source, leaks from one conductor
to the other along the length of the conductor, through the capacitive path.
The current amplitude decreases as we move along the conductor. Current
diminishes at the tip of the conductor. A typical current distribution along
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the antenna is given in Fig. 9.2(b). The current along the antenna produces

Figure 9.2: (a) Distributed capacitance on antenna, and (b) current amplitude
distribution along antenna.

a magnetic field shown in Fig. 9.1. Again, the frequency of the magnetic field
is the same as that of the voltage source. Letter H denotes the magnetic field
and it has units of A/m. The electric and magnetic fields have magnitude and
direction and hence they can be modelled as vectors. Fig. 9.3 depicts color-
coded E and H fields in the vicinity of a dipole antenna as determined from a
finite-element simulation�.

Figure 9.3: Magnitude of E-field (left) and y-component of H-field (right) shown
in z-x plane for a dipole antenna placed along z-axis (along horizontal direction).

During propagation in space, some components of E and H vectors decay
very quickly away from the dipole. Only orthogonal components (mutually
perpendicular components) of the electric and magnetic fields are maintained
during propagation at far away distances. Fig. 9.4 demonstrates the change in
the E-field at progressively higher distances from the dipole antenna.

When we observe the electromagnetic wave emanating from a dipole at a
far away distance, the equal phase surfaces, called wavefronts�, appear like con-

�www.comsol.com, Comsol Inc.
�Wavefronts are the surfaces defined by electric or magnetic waves which have the same

phase. The fields which have the same phase must have left the antenna at the same time
instant.
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Figure 9.4: Color coded E-field plots of a 28 MHz dipole antenna (5.35 m long)
placed along z-axis (vertical direction). E-fields are shown at planes parallel to
z-axis at distances 0.25, 0.5, 1.0, 2.0, 4.0 and 8.0 m away.

centric spheres. The center of these spheres, which is called the phase center,
coincides with the center of the isolating gap in the dipole. This is shown in
Fig. 9.5. The direction of propagation in this figure is outward from the center.

Figure 9.5: Radio wave far away from the source dipole.

The electromagnetic wave generated at some instant gets away from the dipole
in all directions, at a speed of 3·108m/sec.

Now let us take a closer look at the field shown on the patch over the spherical
surface, in Fig. 9.5. If the radius of the sphere is very large compared to the
rectangular patch (which is a very realistic assumption for practical antenna
discussions), the patch approximately defines a planar surface. We can define a
Cartesian plane on which electric field coincides with x axis and magnetic field
coincides with y axis. This is shown in Fig. 9.6. With Ex and Hy are phasors
of the electric and magnetic fields respectively, and ax and ay are unit vectors
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Figure 9.6: Orthogonal electric and magnetic fields and the direction of propa-
gation.

in x and y directions. We can write the two field vectors E and H as

E = Exax and H = Hyay (9.2)

Ex and Hy in an electromagnetic wave propagating in space are related to each
other as

Ex

Hy
= ηo =

√
µo

ϵo
(9.3)

Here µo and ϵo are the permeability and the permittivity of the free space (and
air), respectively. Their values are

µo = 4π · 10−7H/m and ϵo = 8.85 · 10−12F/m (9.4)

ηo is called the free-space wave impedance with a unit of Ω and it can be calcu-
lated as

ηo = 120πΩ ≈ 377Ω (9.5)

The speed of light, c, is also related to permeability and permittivity of free
space as

c =
1

√
µoϵo

. (9.6)

There is a continuous flow of energy in the direction of propagation in electro-
magnetic waves. This power flow is quantified in terms of power density of the
electromagnetic wave. The average power density, P , in the z direction of the
wave depicted in Fig. 9.6, is given in terms of the product of the electric field
phasor and the complex conjugate of magnetic field phasor as

P =
1

2
Re{ExH

∗
y} =

|Ex|2

2ηo
(9.7)

The unit of power density is W/m2. The total power over an area can be
calculated by integrating |Ex|2/2ηo over that area.

An antenna, which radiates in all directions with equal preference, is called
an omnidirectional antenna. For example, a dipole whose length is very small
compared to the wavelength can be approximated as an omnidirectional an-
tenna. In such antennas, the electric field is uniformly distributed over the
spherical equal phase surface. At a distance r from the antenna, the power
density, P (r), is uniform over the sphere and is given as

P (r) =
Po

4πr2
(9.8)
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where Po is the power delivered to the antenna and 4πr2 is the area of the
sphere. From Eq. 9.7 and 9.8 the electric field at that distance becomes

|Ex(r)| =
√
2ηoP (r) =

√
2ηoPo

4πr2
=

√
60Po

r
(9.9)

where Po is in watts and r is in meters. For example, a transmitter delivering
10 mW to an omnidirectional (no directivity) antenna generates an electric field
strength of 0.8 mV/m at 1 km distance.

9.1.1 Receiving dipole antenna

Antennas are reciprocal devices. They behave similarly in reception. When a
dipole is exposed to an electromagnetic wave whose electric field is aligned with
the antenna, a voltage is developed across the isolating gap. A receiving dipole
antenna correctly aligned in an electromagnetic wave parallel to electric field,
E, is shown in Fig. 9.7. The open circuit voltage between the two conductors

+- Vr

2l

E H

2a

Figure 9.7: A dipole of total length 2l correctly aligned to receive the incoming
electromagnetic field.

is the potential difference between them. The potential of each conductor is
the potential at its mid-point. Suppose the dipole has a total length of 2l
meters (where l is very small compared to wavelength). The received voltage is
approximately given as

Vr = Ex l (9.10)

For example, the open-circuit voltage developed across a 1.2 m long dipole is
0.48 mV when the incident electric field magnitude is 0.8 mV/m.

9.2 Dipole antenna impedance

The energy radiated from an dipole antenna appears as lost energy to the circuit,
which drives it. As far as the circuit is concerned, the dipole antenna is not
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different than a piece of circuit with a resistive component, which converts
the same amount of energy into heat. It is customary to associate the energy
radiated from an antenna by a resistance. This resistance is called radiation
resistance.

The radiation resistance of a short dipole of total length 2l, far away from
other conductors, is given approximately in Ω as

Rrd ≈ 80π2

(
l

λ

)2

for
l

λ
< 0.1 (9.11)

For example, the radiation resistance of a 2 m long dipole at 27 MHz has a
radiation resistance of 6.4 Ω. For longer dipoles, we can use the following
polynomial approximation

Rrd ≈ −0.4787+46
l

λ
+15.64

(
l

λ

)2

+3873

(
l

λ

)3

for 0.1 <
l

λ
< 0.25 (9.12)

The effective capacitance between the two conductors depends on the di-
ameter of the conductor, as well as its length. This capacitance, Cd, can be
calculated for a cylindrical conductor of radius a as

Cd ≈ πϵo
l

ln(l/a)− 1
for

l

λ
< 0.1 (9.13)

where both l and a are in meters and Cd is in Farads. For example, the capaci-
tance of a short dipole of length 20 cm with a diameter of 1 mm is 0.647 pF. A
short dipole can be approximated by the radiation resistance Rrd in series with
the capacitance Cd.

If the dipole is not so short, the inductances of the lines are no longer neg-
ligible. In this case, the series reactance of the dipole antenna is given by

Xd = −120 cot

(
2π

l

λ

)
[ln (l/λ)− 1] +XL (l/λ) for

l

λ
< 0.25 (9.14)

where XL (l/λ) can be calculated by the following polynomial approximation

XL (l/λ) ≈ −0.4456 + 106.86
l

λ
− 342.64

(
l

λ

)2

+ 2382

(
l

λ

)3

(9.15)

9.2.1 Monopole antenna

Monopole or whip antennas used to be the most commonly encountered anten-
nas [18]. Old car radio antennas and old mobile phone antennas are all this
type of antennas. Monopole antennas are derived from dipoles, by eliminating
half of the dipole using a reflective ground plane. This is shown in Fig. 9.8.
Conducting surfaces behave like mirrors to electromagnetic waves. As a direct
result of this physical property, a pole of length l placed on a conducting surface
behaves like a dipole of length 2l. The electrical connections are between the
pole and the ground plane. The radiation resistance of a short monopole of
length l with an infinite conducting ground plane is

Rrm ≈ 40π2

(
l

λ

)2

for
l

λ
< 0.1 (9.16)
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Figure 9.8: A monopole antenna.

which is half as much as the resistance of a dipole of length 2l.
For longer monopoles, one can use half the resistance of the dipole given in

Eq. 9.12.

Rrm ≈ −0.2393+23.0
l

λ
+7.82

(
l

λ

)2

+1936

(
l

λ

)3

for 0.1 <
l

λ
< 0.25 (9.17)

The ground plane diameter should be at least 10λ and there should be no other
conductors nearby for these equations to be accurate.

The radiated power in an antenna is

Po = Rr
I2

2
(9.18)

For the same input current I, a dipole (of length 2l ) radiates a total power Pr

to the entire space, while a monopole (of length l) radiates only to half space,
hence a total power of Pr/2. Therefore, the radiation resistance of monopole is
half as much as the radiation resistance of an equivalent dipole. For example, a
monopole of length 10 cm at 28 MHz has a radiation resistance of 0.034 Ω. If
the length is 50 cm, the radiation resistance becomes 0.86 Ω.

Similarly a monopole antenna of length λ/4 placed on a large conducting
surface behaves like a λ/2 long dipole.

The effective capacitance between the conductor (of length l and radius a)
and the infinitely large ground plane in a monopole antenna is given by

Cm ≈ 2πϵo
l

ln(l/a)− 1
for

l

λ
< 0.1 (9.19)

where Cm is in Farads and both l and a are in meters. Therefore, the capacitance
of a monopole of length l is the twice as much as the capacitance of a dipole of
length 2l. For example, the capacitance of a monopole of length 10 cm with a
diameter of 1 mm is 1.29 pF.

When the monopole is not short, half of the reactance given in Eq. 9.14 can
be used in the equivalent circuit of the monopole:

Xm =
Xd

2
= −60 cot

(
2π

l

λ

)
[ln (l/λ)− 1] +

XL (l/λ)

2
for

l

λ
< 0.25 (9.20)

Fig. 9.9 shows the series resistance, Rm, and series reactance, Xm, of a monopole
antenna using Eqs. 9.17 and 9.20 for various l/a ratios. For example, a monopole
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Figure 9.9: Series resistance (solid) and series reactance with l/a=100 (dash-
dot), l/a=1000 (dotted), l/a=10000 (dashed) of a monopole antenna placed on
a very large planar conducting ground plane.

of length 120 cm with a diameter of 1 mm has a series resistance of 5.15 Ω and
a series reactance of −474 Ω.

The reactive component becomes zero when the monopole length is l=0.25λ
for an infinitely thin conductor. Under this condition, when the antenna impe-
dance becomes purely resistive, the antenna is known as quarter-wave monopole
antenna and it becomes a very good radiator. You can refer to Table 1.2 on
page 3 to determine the lengths of quarter-wave monopole antennas. For ex-
ample, a quarter-wave GSM-900 antenna for a cellular phone should be about
8 cm long, while a quarter-wave Wi-Fi antenna is about 3 cm.

When the conductor radius, a, increases the resonance occurs at a lower l/λ
value. We note that presence of a conductor within λ distance of the monopole
antenna will change these curves significantly. For example, if there are nearby
conductors, the capacitance increases and the resonance occurs at a lower fre-
quency. If the ground conductor is not a perfect conductor, there will be an
additional loss term due to ground loss, increasing the series resistance.

The equivalent circuits of a transmitting and receiving monopole antennas
are shown in Fig. 9.10. In the transmitting monopole, the power dissipated in
Rrm is the power transmitted, Po. To maximize the power transmitted, one
may try to tune out the negative series reactance of the monopole antenna by
a series inductance. If the series reactance is very large, the inductance should
be also large. The loss of such an inductance may be significant, reducing the
power transmitted. If possible, it is much better to increase the size of the
antenna to increase the power transmitted.
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Rrm

Rrm

+
Vr

(a) (b)

Rout
+

Rin

Xm

Xm

Figure 9.10: Equivalent circuits of (a) a transmitting monopole antenna fed by
a source of impedance Rout and (b) a receiving monopole antenna feeding a
receiver of input impedance Rin.

In fixed stations where the antennas are installed in places like roofs of
buildings, it is possible to simulate a ground plane to an acceptable level by
properly designed conducting frame. It is almost never possible to have a large
planar conducting surface (compared to the wavelength), on which an antenna
can conveniently be placed in mobile stations. The radiation resistance of a
monopole is always determined by the mutual impedance of the ground reference
in such systems. This can be limited to the dimensions of the casing of a handset
in case of mobile phones.

♦ TRC-11 uses one short monopole antenna functioning both as transmitting
and receiving antenna.

9.3 Atmospheric propagation

As indicated by Eq. 9.9, in free space, E field of an electromagnetic wave obeys
the inverse law: The electric field of the wave is proportional to the inverse of
the distance from the transmitter. Since the power density is proportional to
the square of the electric field, the power density is proportional to the inverse
of the square of the distance. Doubling the distance will reduce the signal
level by 6 dB. Electromagnetic waves normally travel in straight lines (called
line-of-sight) unless they are reflected by a conductor.

The earth is surrounded by ionosphere, a conducting layer of gas ionized by
the radiation of sun. The exact distribution of ionization in the atmosphere
depends on the time of the day, on the season of the year and on the year
of the 11-year sunspot cycle. It typically extends between 60 km to 500 km
above the earth surface. The ionosphere sometimes acts like an absorber of
electromagnetic waves and sometimes acts like a reflector (see Fig. 9.11).

At frequencies between 30 kHz and 3 MHz (wavelengths between 10 km to
100 m), the electromagnetic waves are guided between the conducting surface
of earth and the lower (60 to 90 km high) portion of the ionosphere (AM radio
band falls into this category). These waves are called ground waves, and they
follow the curvature of the earth. But they are rapidly attenuated due to loss
in the imperfect conductors of earth and ionosphere. These frequencies travel
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Earth

Ionosphere
300km

Figure 9.11: Electromagnetic waves reflecting from the conducting layers of
ionosphere.

longer at night when the lower layers of ionosphere disappear. This is why AM
radios receive higher number of stations at night.

Electromagnetic waves at frequencies between 3 MHz and 30 MHz (wave-
lengths between 100 m to 10 m), are reflected by the higher layers of ionosphere
(up to 500 km high) if their frequencies are below a critical frequency, fc. The
critical frequency is determined by the ionosphere conditions and hence it de-
pends on the time of the day, the season of the year and the year of 11-year
cycle. fc is typically less than 10 MHz, but it may go as high as 30 MHz. Higher
frequencies are attenuated less at the reflections of the imperfect conductors of
the ionosphere and the earth surface. Therefore, the best propagation occurs
at frequencies just below the critical frequency. For example, if fc > 28 MHz,
a communication at 28 MHz may be possible with a small power (1 W) trans-
mitter at distances as high as 4000 km.

Above the critical frequency, fc, no reflection at the ionosphere occurs and
the electromagnetic waves penetrate through it. Hence such electromagnetic
waves (for example, FM radio band) can be received only in line-of-sight mode.
However, during the hot days of summer, especially in Mediterranean Sea and
the Persian Gulf regions, it may be possible to receive FM signals from distances
1000 to 4000 km due to a type of radio propagation known as tropospheric
ducting. In this mode of propagation, the waves do not travel in straight lines
but rather in curves, due to an abnormal distribution of temperature in the
atmosphere.

9.3.1 Using amateur frequency bands

National regulation authorities tightly regulate transmission at any frequency.
You are allowed to use the transmitters you built in amateur bands, provided
your transmitter satisfies the emission requirements. The equipment that can
be used in other bands must have “type approval”. Table 9.1 lists some of the
US amateur radio bands.

As a hobby, amateurs [19] communicate surprisingly long distances using
very low power. For example, an amateur (call sign TA2BG) operating from
Ankara, Turkey using a transmitting power of only 3 W at 40 m band was
heard from Indonesia (more than 9000 km away) using WSJT-X computer pro-
gram [20] and JT65 protocol [21].§

The operators using transmitters are required to have amateur licenses. If
you intend to use your TRC-11 at higher power for purposes other than the

§You can refer to the interesting web page https://pskreporter.info and the map inside for
real time information about atmospheric propagation in different amateur bands.
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requirements of this course, you must contact your national regulatory agency
and obtain an amateur license.

Band Frequency (MHz) Properties

160 m 1.8–2.0 Long distance at night, noisy in summer
80 m 3.5–4.0 Best at night, works best in winter
40 m 7.0–7.3 Most reliable all season band
20 m 14.00–14.35 Most popular during daytime (*)
10 m 28.0–29.7 Best long distance (*)
6 m 50–54 Line-of-sight (LOS) propagation, sporadic E
2 m 144–148 LOS propagation, tropospheric refraction

1.25 m 219–225 LOS propagation
70 cm 420–450 LOS propagation
33 cm 902–908 LOS propagation
23 cm 1240–1300 LOS propagation

Table 9.1: Some US amateur radio bands. (*) Communications on HF bands
with wavelengths 20 m or shorter depend critically on the state of the ionosphere,
which in turn depends on the 11-year sunspot cycle.
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9.4 Problems

1. A short monopole of length 20 cm is used as the antenna of a mobile set
operating at 150 MHz. What is the open circuit voltage generated at a
receiving antenna, when another set transmits 2W at 3km distance?

2. Assume we want to use a dipole antenna, which has a radiation resistance
of 7 Ω with TRC-11. Calculate the total length of the antenna. Calculate
the antenna capacitance Cd if the diameter of the poles is 1 cm. Calculate
the value of series inductor required to tune this capacitor at 27 MHz.
What is the Q of this antenna?

3. A monopole of length 30 cm and diameter 1 mm receives a signal at
24 MHz. The transmitter is 10 W and it is at a distance of 10 km. The
monopole is connected to a receiver with an input impedance of 120 Ω.
Find the voltage amplitude at the input of the receiver.

4. A typical FM car antenna is a dipole antenna integrated in the back
windshield of the car. Estimate the total length (2l) of the dipole antenna
with purely real impedance for your favorite FM station.



Appendix A

LTSpice Tutorial

LTSpice is a analog circuit simulator with integrated schematic capture and
waveform viewer. It is distributed freely by Linear Technology Corp (now Ana-
log Devices). You can download it from the web site of the company:

www.analog.com/en/design-center/design-tools-and-calculators.html

It is a very powerful program and can be used to simulate any linear or nonlinear
circuit of any size. It is highly recommended that you learn how to use it
effectively.

The schematic entry can use more than 2,000 symbols. You can also draw
your own symbols for devices you wish to import into the program.

Transient (Time domain) analysis can be used to simulate circuits containing
linear (R, L or C) or nonlinear (diodes) elements of any order. Note that the
analytic analysis methods presented in the text deals only with time-domain
analysis of first-order circuits. LTSpice can cope with any order.

AC analysis can be used to find the transfer function of circuits containing
linear elements only. LTSpice solves the circuits using the phasor approach.

A.1 DC analysis of a resistive circuit

� File → New Schematic (or click New Schematic icon) for the purpose of
generating the schematic shown in Fig. A.1.

� Press F2 (or click Component icon) → voltage (to enter a voltage source),
left-click to enter it on the schematic window.

� Right click on the voltage source → 5 (to set the voltage at 5 V)

� Press r (or click Resistor icon) (to enter a resistor)

� Ctrl-R (to rotate the resistor) before placing on the schematic

� Right click on the resistor → 2 kΩ (to define the value of resistor as 2 kΩ)

� Enter the other resistor in a similar manner.

� Press F2 → current (to enter a current source)
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Figure A.1: LTSpice schematic of a resistive circuit and the result window after
DC analysis.

� Ctrl-R twice to flip the current source before placing it in the schematic.

� Right click on the current source → 4 m (to set the current at 5 mA)

� Press g (or click Ground icon) → place it on the bottom node (to define
the ground node)

� Press F3 (or click Wire icon) (to join the components using Wire tool)

� Press F4 (or click Label Net) → Va and place it above V1 as the node
name. Two nodes with the same node name are assumed to be connected
(without a wire between them). This is useful to simplify the schematic if
it becomes too crowded with wires.

� Add node name Vb in a similar manner.

� Simulate → Edit Simulation Cmd → DC op pnt and place it on the
schematic (.op should appear on the schematic).

� Simulate → Run (or click Run icon)

� A result window will appear as in Fig. A.1 showing the voltage and current
values.

� The reference direction of currents of resistors are determined by the orig-
inal placement or rotation of the component. If the reference label of a
resistor is on the right-hand-side, the current is defined downwards, oth-
erwise it is upwards. To modify the reference direction click Move icon,
choose the resistor by placing a rectangle over it and ctrl-R to rotate it.
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A.2 Input-output relation of a diode circuit

We would like to obtain Vb as a function of Va for a circuit containing a diode
(Fig. A.2).

� File → New Schematic (or click New Schematic icon) for the purpose of
generating the schematic shown in Fig. A.2.

Figure A.2: LTSpice input-output relation analysis of a diode circuit.

� Place the voltage sources and resistors. Set their values.

� Press d (or click Diode icon) and place the diode.

� Place the Ground node and join the components using Wire tool.

� Press F4 (or click Label Net icon) → Va (to label the input node)

� Label the output node as Vb

� Simulate → Edit Simulation Cmd → Dc sweep → Name of 1st Source to
Sweep: V1, Start Value: -2, Stop Value: 8. Place the Spice directive (.dc
V1 -2 8) on the schematic.

� Simulate: Click Run icon
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� An empty graph should appear. You can add a trace by going to schematic
window and clicking on the node when red voltage probe appears. Click
Vb node to see the relation Vb versus Va.

� Plot Settings → Notes and Annotations → Place Text: Va. Place it near
X-axis.

� You can copy the graph using Tools → Copy bitmap to Clipboard (for
pasting into another application)

A.3 Time domain analysis of an RC Circuit

� File → New Schematic (or click New Schematic icon) for the purpose of
generating the schematic shown in Fig. A.3

Figure A.3: LTSpice schematic of the RC circuit.

� Place the voltage source and resistor. Set their values.

� Press c (or click Capacitor icon) (to enter a capacitor)

� Right click on the capacitor → 5u (to define 5 µF)

� Place the Ground node and join the components using the Wire tool.

� Label the capacitor voltage as Vc

� Press s (or click SPICE Directive icon) → .IC V(Vc)=-2 and place it on
the schematic (to specify the initial capacitor voltage at −2 V using the
Initial Condition directive)

� Simulate → Edit Simulation Cmd → Stop Time: 250 m (to make an
analysis from 0 to 250msec), place the command on the schematic.

� At this point you should have a schematic as shown in Fig. A.3.

� Simulate: Click Run icon

� A graph should appear (see Fig. A.4. You can add new traces by clicking
on the node with the voltage probe. You can plot currents by bringing
the cursor over a component and clicking. You can remove the unwanted
traces by right clicking on the trace name and clicking on ”Delete this
trace” button.
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Figure A.4: LTSpice simulation result of capacitor voltage for the RC circuit.

� You can attach cursors to read the values of the graphs. For this purpose,
right click on the trace name and click Attached cursor combo box. You
can attach one or two cursors. Using two cursors, you can determine the
difference between two points on the graph.

� In a time domain simulation, the instantaneous power dissipated on a
component can be determined by clicking ALT-Left click on the compo-
nent. An expression for the instantaneous power (involving voltage and
current) will display in the graph window. The average value of this ex-
pression can be found by CTRL-Left click on the instantaneous power
expression in the graph window. Note that for an accurate average value
the simulation time should be an integer multiple of the excitation period.
When a lossless component like a capacitor is in a circuit with sinusoidal
excitation, the instantaneous power on the capacitor in the steady-state
will change between positive and negative values with an average value of
zero. (Because of numerical errors, that average value might be a small
but a non-zero value.) If the circuit is not excited sinusoidally, the power
may be non-zero, indicating the finite stored energy in the capacitor.

� You can change the colors of the graphs using Tools → Color Preferences

� Change the initial condition of the capacitor and the value of the resistor.
Find out what happens.

� You can also specify an initial condition on a branch current. For example,
IR1(0)=1 mA can be specified by .IC i(R1)=1 m

A.4 Time domain analysis of a second order RC

circuit

� Draw the schematic as shown in Fig. A.5. Enter the values of the compo-
nents.
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� For the voltage source choose Advanced. Choose PULSE. Vinitial:0,
Von:5, Tdelay:0, Trise: 1n, Tfall: 1n, Ton: 5 m to define a 5 ms wide
5 V pulse with 1 ns rise and fall times.

� In Edit Simulation Command enter Stop Time: 10 m (to simulate up to
10 ms). Place that command on the schematic.

Figure A.5: LTSpice schematic of a second-order RC circuit.

� Press Run command. Click on the Vin, VC1 and VC2 nodes to display
the voltage waveforms as shown in Fig. A.6. Note that the waveforms
are not of the kind that are solved analytically in the text. LTSpice can
handle circuits of any order :)

Figure A.6: LTSpice simulation of the time domain response to a pulse for the
second-order RC circuit.

A.5 AC Analysis of a series RLC circuit

The transfer function of an RLC circuit is to be found as follows:

� Draw the schematic as shown in Fig. A.7. Enter the values of the compo-
nents. R=51, L=8 µH, C=50 pF.

� For the voltage source choose Advanced.

� Write Small signal AC analysis, AC amplitude: 1 volt.

� In Edit Simulation Command screen click AC analysis tab.
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� Use Type of Sweep=Decade, Number of points per decade=100.

� Write Start (1Meg for 1 MHz) and Stop (30Meg for 30 MHz) frequencies.

� Place the .ac dec 100 1Meg 30Meg command at the schematic. At this
time, you should have the schematic shown in Fig. A.7.

Figure A.7: LTSpice schematic of the RLC circuit.

� Press Run command. You should have the graph as shown in Fig. A.8.
The left Y-axis shows the magnitude in dB, while the right Y-axis shows

Figure A.8: LTSpice simulation of the transfer function amplitude (solid) and
phase (dotted) of the RLC circuit.

the phase shift in degrees.

� You can find the 3-dB bandwidth of the circuit by CTRL-Left click on
the voltage expression on the graph window. The resulting list shows the
peak value and the 3-dB bandwidth with respect to that peak value.

� In Plot settings, click Grid.

� You can change the graph properties in Tools → Control Panel → Wave-
forms
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� Copy the plot using Tools → Copy bitmap to Clipboard to paste it into
another application.

A.6 Analysis of an OPAMP circuit

Consider an inverting amplifier with a gain of 10 built with an OPAMP, LT1413.
The OPAMP is powered with ±12 V supplies .

U1

LT1413

R1

1K

R2

1K

R3

10K V1

12
V2

12

V3

AC 1

vout

.ac dec 100 1k 100meg

Figure A.9: LTSpice schematic of the OPAMP circuit for AC analysis.

� Draw the schematic shown in Fig. A.9. To choose the OPAMP, click on
Component icon, choose [Opamps]. Then click on LT1413. Note that
LTSpice contains the models for components produced by Analog Devices
only. You can add other models if SPICE models are available.

� To perform a small-signal AC analysis, define Small signal AC analysis,
AC amplitude: 1. Here, input is specified as unity, so that the output
voltage gives the gain directly. An output voltage of 10 does not mean
that we have a peak voltage of 10 V, it means we have a gain of 20. Since
we are doing small-signal analysis, the saturation voltages of OPAMP does
not come into picture. On the other hand, the supply voltages must be
present in order to get a correct answer.

� In Edit Simulation Command screen click AC analysis tab.

� Use Type of Sweep=Decade, Number of points per decade=100.

� Write Start (1K for 1 KHz) and Stop (100Meg for 100 MHz) frequencies.

� Place the .ac dec 100 1Meg 30Meg command at the schematic.

� Press Run command. You should have the graph as shown in Fig. A.10.
The gain at low frequencies is 20 dB as expected. But the gain drops
above 100 KHz, because of the OPAMP limitations. The phase shift at
low frequencies is nearly 180o, indicating the inversion.

� To perform a large signal analysis, enter a large signal excitation to the
input source by Right-Click: SINE, Amplitude[V]: 1.5, Freq[Hz]: 1K
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Figure A.10: LTSpice simulation of the transfer function amplitude (solid) and
phase (dotted) of the inverting amplifier circuit.

U1

LT1413

R1

1K

R2
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R3

10K V1

12
V2

12

V3

SINE(0 1.5 1k)

AC 1

vout

;ac dec 100 1k 100meg

.tran 4m

Figure A.11: LTSpice schematic of the OPAMP circuit for transient analysis.

� In Edit Simulation Command, click Transient analysis tab. Set the Stop
time to 4m, to see four cycles. The schematic window should look like in
Fig. A.11.

� Press Run command. You should now have the graph showing the clipped
sine wave as shown in Fig. A.12.

A.7 Analysis of a BJT circuit

Consider a BJT amplifier built with 2N2222.

� Draw the schematic shown in Fig. A.13. To choose the BJT, click on
Component icon, choose npn. Then right-click on BJT. Click Pick New
Transistor. Choose 2N2222.

� First perform a transient analysis to make sure that the BJT operates
in ACT region. For the input source, choose Sine wave in the Advanced
tab. Choose the frequency as 1K (1 KHz) and the peak amplitude as 10m
(10 mV). Perform a transient analysis for 10m (10 ms). Observe that the
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Figure A.12: LTSpice transient simulation of the OPAMP circuit.

Figure A.13: LTSpice schematic of the BJT amplifier circuit for transient and
AC analysis.

collector-to-emitter voltage (V(vc)-V(ve)) is greater than the saturation
voltage (about 0.2 V) as shown in Fig. A.14.

� To see the saturation, enter a larger signal excitation to the input source
by Right-Click: SINE, Amplitude[V]: 1, Freq[Hz]: 1K. Click Run to get
the waveform shown in Fig. A.15 as the collector voltage.

� To perform a small-signal AC analysis, set the input voltage source in the
Advanced tab as Small signal AC analysis, AC amplitude: 1.

� In Edit Simulation Command screen click AC analysis tab.

� Use Type of Sweep=Octave, Number of points per decade=100.

� Write Start (1K for 1 KHz) and Stop (10Meg for 10 MHz) frequencies.

� Place the .ac oct 100 1K 10Meg command at the schematic.

� Press Run command. You should have the graph as shown in Fig. A.16.
There is a 3-dB corner frequency of gain at low frequencies around 1.4 KHz.
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Figure A.14: LTSpice simulation of the transient response of the BJT amplifier.

Figure A.15: LTSpice simulation of the BJT amplifier with a larger input signal.

This is due to high-pass response of C1, the DC-block capacitor. In the
mid-band, the gain is about 31 dB. The high frequency 3-dB corner fre-
quency is about 10 MHz because of the internal capacitors of BJT. The
phase shift at mid frequencies is nearly 180o, indicating the inversion of
the gain.
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Figure A.16: LTSpice simulation of the gain amplitude (solid) and phase (dot-
ted) of the BJT amplifier circuit.



Appendix B

Significant figures

Significant figures of a number indicate its precision. In Electrical Engineering
two or three significant figures are typically sufficient in most cases. Rules for
identifying significant figures:

1. All non-zero digits or zeros appearing between two non-zero digits are
significant. For example, 53.4 V and 3.01 mA have 3 s.f. (three significant
figures).

2. Leading zeros are not significant. For example, 0.000507 V has 3 s.f.

3. Trailing zeros in a decimal point number after the decimal point are sig-
nificant. For example, 1.00 µA, 2.30 kΩ or 0.00540 mS all have 3 s.f.

4. There may be an ambiguity in the trailing zeros of a number not containing
a decimal point. For example, it is not clear whether 7800 Ω has two, three
or four significant figures. To resolve this problem

� A decimal point may be added after the number. For example,
7800. Ω has 4 s.f.

� An appropriate unit may be used to add a decimal point. For exam-
ple, use 7.80 kΩ or 7.8 kΩ instead of 7800 Ω to signify 3 s.f. or 2 s.f.,
respectively.

� Scientific notation can be used. For example, 7.8 · 103 Ω has 2 s.f.

The rules for determining the number of significant figures in a given problem
can be stated as

1. For addition and subtraction of numbers with known significant figures,
the result should have as many decimal places as the number with the
smallest number of decimal places. For example, 145.2+ 1.245 = 146.4 or
4.78 · 10−2 − 2.678 · 10−4 = 4.75 · 10−2

2. For multiplication and division of numbers with known significant figures,
the results should have as many significant figures as the number with the
smallest number of significant figures. For example, 20.11 × 1.2 = 24 or
1.854 · 10−8/5.35 · 104 = 3.47 · 10−13. Hence, writing 10.1

√
210.1 = 14.284

is poor engineering. One should write 10.1
√
2 = 14.3.
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Unit prefixes

Symbol Name Magnitude Symbol Name Magnitude
y yocto 10−24 da deca 101

z zepto 10−21 h hecto 102

a atto 10−18 k kilo 103

f femto 10−15 M mega 106

p pico 10−12 G giga 109

n nano 10−9 T tera 1012

µ micro 10−6 P peta 1015

m milli 10−3 E exa 1018

c centi 10−2 Z zetta 1021

d deci 10−1 Y yotta 1024



Appendix C

Answers to selected
problems

Chapter 1

1. λ=17 m and λ=1.7 cm

3. 34 dB.

4. 2.0 cos(ωo + ωs)t+ 2 cos(ωo − ωs)t

5. Mixer output:

1

2
(cos(ωo − ωs)t+ cos(ωo + ωs)t) + cos(ωo − 2ωs)t+ cos(ωo + 2ωs)t

+
3

2
(cos(ωo−3ωs)t+cos(ωo+3ωs)t)+2(cos(ωo−4ωs)t+cos(ωo+4ωs)t)

Chapter 2

1. (a) 5.6 k±10%, (b) 390 k±10%, (c) 750 Ω±5%

2. PR=0.27 W, PV =0.27 W, PI=0.

3. 5/
√
3.

4. (a) 46 Ω (b) 42 Ω (c) 8.4 k (d) 2.0 k (e) 49 Ω

5. (a) 7.1 (b) 0.99 (c) 20.

6. (a) 159 Hz (b) 50.0 Hz (d) ω/2π

7. 58 hrs, 8.7 kilojoules

8. V1=4.53 V, V2=6.11 V

9. I1=0.25 µA
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10. (a) I1=10.9 mA, I2=1.07 mA, V1=54.6 mV, (b) I1=2.96 mA, I2=0.926 mA,
V1=2.04 V, (c) I1=96.5 mA, I2=1.66 mA, V1=12.6 V, (d) I1=-1.29 mA,
V1=-4.27 V, (e) I1=-0.467 mA, I2=-7.85 mA, V1=-1.54 V

11.

iL(t)(mA) =

{
−89.2 + 119.2e−t/21.3 for 0 < t < 40 µs

0.8− 71.8e−(t−40)/21.3 for t ≥ 40 µs

vR(t) =

{
−12− 111.7e−t/21.3 for 0 < t < 40 µs

−12 + 1077e−(t−40)/1.33 for t ≥ 40 µs

12.

iL(t)(mA) =

{
0.1− 0.095e−t/416 for 0 < t < 100 µs

−0.1 + 0.1253e−(t−100)/416 for t ≥ 100 µs

13. (a) vC(t) = ISR− ISRe−t/RC for t ≥ 0. iC(t) = ISe
−t/RC for t ≥ 0.

(b) iL(t) = IS − ISe
−t/(L/R) for t ≥ 0. vL(t) = ISRe−t/(L/R) for t ≥ 0.

14. 1070 Ω

15. Mass of the three lines: 1.57 t. Power loss over 200 km: 84.4 kW. With
34.5 kV, the mass should be 190 t!

16. R1/R2=7/8=0.875. R1=3.3 k, R2=3.9 k. Using 5% tolerances: Max
Vout=8.50 V, Min Vout=7.75 V, Error= +6% −3%.

17. (C1 + C2)/C1=12/5=2.4, C2/C1=1.4, C2=47 nF, C1=33 nF.
Max Vout=5.54 V, Min Vout=4.38 V, Error= +11% −12%.

18. 137 pF

19. (a) iL(0
−) = −2.0 mA, vL(0

−) =0.0, (b) iL(0
+) = −2.0 mA, vL(0

+) =3.3 V,
(c) vL(t) = 0.0 for t < 0, and vL(t) = 3.3e−t/4.5µ for t ≥ 0.

20. Voltage gain=20. dB. When Rin = RL, power gain=100=20. dB. When
Rin = 10RL, power gain=1000=30. dB.

21. Using Eq. 2.58

iL(t) =

{
105t for 0 < t ≤ 5 µs

0.5 A for t ≥ 5 µs

22. Using Eq. 2.43

vC(t) =

{
−2 + 500t for 0 < t ≤ 12ms

4 V for t ≥ 12 ms
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Chapter 3

1. (a) -59.1-j9.39=59.9∠(−171o), (b) -2.43+j3.11=3.94∠128o,
(c) 0.630+j3.92=3.97∠80.9o,
(d) 2.54·10−3 − j4.58 · 10−4 = 2.58 · 10−3∠(−10.2o)

8. (a) 140∠− 0.79, (b) 33∠− 0.79, (c) f = 0: 94; f = 100 kHz: 93∠− 0.069;
f = 500 kHz: 82∠− 0.27; f = 1 MHz: 67∠− 0.34; f = 1.44 MHz: 59∠−
0.32; f = 5 MHz: 48∠ − 0.14; (d) 140∠0.78, (e) f = 1 MHz: 150∠0.020;
f = 19 MHz: 180∠0.16; (f) f = 1 MHz: 12∠1.6; f = 36.5 MHz: 390∠1.4;
f = 73 MHz: 720∠1.5.

9. For V=5∠π/6 V: (a) I=0.036∠1.3 ⇒ i(t) = 0.036 cos(2π7.2 · 106t+ 1.3).
(b) I=0.15∠1.3 ⇒ i(t) = 0.15 cos(2π720 ·103t+1.3). (d) I=0.036∠−0.26
⇒ i(t) = 0.036 cos(2π7.2 · 106t − 0.26). (e) f = 1 MHz: I=0.0333∠28.9o

⇒ i(t) = 0.0333 cos(2π106t+ 28.9o).

For I=2∠90o mA: (a) V=0.286∠135 ⇒ v(t) = 0.286 cos(2π7.2 · 106t +
135o). (b) V=66.5∠45o mV ⇒ v(t) = 66.5 cos(2π720 ·103t+45o). (d) V =
0.282∠135o ⇒ v(t) = 0.282 cos(2π7.2 · 106t+ 135o).

For V = 3.77∠138.5o: (a) I=0.027∠ − 176o ⇒ i(t) = 0.027 cos(2π7.2 ·
106t−176o). (b) I=0.114∠−176o ⇒ i(t) = 0.114 cos(2π720 ·103t−176o).

10. 8(e) with 9(a): 1 MHz: IL = 33∠26.5o mA; 19 MHz: IL = 19∠24o mA
8(e) with 9(b): 1 MHz: IL = 2∠87o mA; 19 MHz: IL = 1.5∠45o mA
8(e) with 9(c): 1 MHz: IL = 25∠135o mA; 19 MHz: IL = 15∠86o mA

11. (a) 2.5 k in series with 0.69 H. (b) 541 Ω in series with 1.7 µF (c) 975 Ω
in series with 27 nF (d) 707 Ω in series with 1.4 nF (e) 43.6 Ω in series
with 320 pF.

12. 25 MHz: 58.3 cos(2π25 · 106t− 45.5o) mA.
50 MHz: 36.8 cos(2π50 · 106t− 63.8o) mA.

13. f=1.33 MHz

14. R = 587 kΩ

15. f = 77.3 kHz

16. (a) 2.5 kΩ in parallel with 23 H. (d) 1.4 kΩ in parallel with 707 pF.

17. (b) VTH = 2.12 V, Zeq = 396∠−π/4 Ω. (c) VTH = 0.446∠63.1o V,
Zeq = 892∠−26.5o Ω. (d) VTH=1.91 V, Req=1.81 kΩ. (f) VTH = 0.79 V,
Req = 808 Ω. (k) VTH = 0.26 V, Req = 1.3 kΩ

18. (b) IN = 5.4∠π/4 mA, Zeq = 396∠−π/4 Ω. (c) IN = 0.5∠89.6o mA,
Zeq = 892∠−26.5o Ω. (d) IN=2.07 mA, Req=1.81 kΩ. (f) IN = 0.98 mA,
Req = 808 Ω. (k) IN = 0.2 mA, Req = 1.3 kΩ

19. (a) IN = I(ω)/2, Zeq = 97 Ω. (b) IN =
V (ω)

2R
,

Zeq =
2RωL√

4R2 + ω2L2
∠

(
tan−1 2R

ωL

)
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20. Veq = 0.042 · V (ω), Zeq = 49 Ω

21. (c) At DC: VTH = Vin, Zeq = 50 Ω.
At 20 MHz: VTH = 0.57∠−0.96 · Vin, Zeq = 50.3∠1.24 Ω.
At 40 MHz: VTH = 0.34∠−1.2 · Vin, Zeq = 125∠1.5 Ω.

22. (a) Vout = 1 V, (b) Vout = 0.17 V, (c) Vout = 1 V

25. (b) Vo/Vin=3.14 (c) Vo/Vin=-14.4 (d) Vo = −2.55 V1 − 3.73V2

(e) Vo = 4.73V1 − 3.73V2 (f) Vo = 1.67V1 − 3.73V2 (g) Vo = −102Vin

(h) Vo = −10400Vin.

26. (b) Vo

Vin
= −3.13 + j 6.44·105

ω (e) Vo

Vin
= 4.13

1+jω4.95·10−7

(g) Vo

Vin
= −(2 + jω1.6 · 10−6)

27. (e) For f → 0, Vo

Vin
→ 4.13; for f → ∞, Vo

Vin
→ −j 8.34·106

ω

28. f=876 kHz.

29.

V (t) = Vdc
1 + ∆(t)/do

1 + (Cc/(Co + Cc))(∆(t)/do)
≈ Vdc

(
1 +

Co

Co + Cc

∆(t)

do

)

Chapter 4

1.

vC(t) =

{
2.3− 2.3e−t/0.002 for 0 < t ≤ 0.0020

1.45 for t ≥ 0.0020

2. Using Eq. 2.58

iC = L(t) =


7 · 104t for 0 < t ≤ 5 µs

0.35− 5.7 · 104(t− 5 · 10−6)) for 5µs ≤ t ≤ 11.14 µs

0 for t > 11.14 µs

3. From the voltage doubler circuit of Fig. 4.40 in p. 172, we have VC1 = 9.4 V
and VC2 = 18.8 V. Hence v1 = 10 sin(ωt) − 9.4. C3 and D3 forms a
voltage clamper for this input⇒ VC3=18.8 V.D4 and C4 forms a half-wave
rectifier ⇒ VC4 = 18.8 V. The output voltage is vo = VC2 + VC4=37.6 V.
This circuit is a voltage quadrupler.

4. (a) ACT, 6.92 V, (b) ACT, 6.72 V, (c) ACT, 6.61 V.

5. (a) ACT, 6.17 V, (b) ACT, 5.80 V, (c) ACT, 5.59 V.

6. (a) ACT, 2.34 V, (b) ACT, 2.68 V, (c) ACT, 2.82 V.

7. ACT, 8.75 V.

8. SAT, −4.28 V.

9. ACT, 6.96 V.
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10. ACT, AV =125.

11. ACT, AV =281.

13. AV =4.43.

14. AV =0.99.

Chapter 5

2. VR = 5.94∠53.5o, VL = 104∠143.5o, VC = 112.5∠− 36.5.

3. VR = 10∠0, VL = 51∠90o, VC = 51∠− 90o.

4. C=98.9 pF

5. ωo = 95.35 · 106 rps ω1 = 85.87 · 106 rps ω2 = 105.87 · 106 rps

7.

ωo =

[
1

LC
−
(
RL

L

)2
]1/2

If RS >
√
L/C, no resonance occurs.

9. Q=10.3

10. R=150 Ω, C=211 pF.

11. C=2.27 nF. 176 mW.

12. For R=0 fo=15.915 MHz. For R=1 fo=15.914 MHz. For R=100 no
resonance.

13. fo=1.33 MHz.

14. C=24.8 pF. vR(t) = 5 cosωot, vL(t) = 11.4 cos(ωot+ 90o),
vC(t) = 11.4 cos(ωot− 90o).

15. Lower 3-dB: f1=22.6 MHz, vR(t) = 3.5 cos(ω1t−45o), vL(t) = 6.5 cos(ω1t+
45o), vC(t) = 10.0 cos(ω1t− 135o).
Upper 3-dB: f1=34.8 MHz, vR(t) = 3.5 cos(ω1t+ 45o),
vL(t) = 10.0 cos(ω1t+ 135o), vC(t) = 6.5 cos(ω1t− 45o).

16. RDC=54 mΩ. fsc=2 MHz. R=200 mΩ at 28 MHz.

17. l=9.8 mm.

18. N=9.

19. 18 turns

20. AL=2.65 nH/T2. R=0.24 Ω.

23. At f=400 kHz, Vout/Vin=9.6∠− 29o.
At f=1 kHz, Vout/Vin=11∠− 0.08o.

24. At f=1 MHz, Vout=4.08∠− 172o.
At f=1 kHz, Vout=4.4∠− 150o.

25. C=99 pF |B1/A1| = 0.09 |B2/A2| = 0.007
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Chapter 6

1. Vout=1.52∠− 0.1o, IC = 12∠89.9o

2. C1 = C3 = 53 nF L2 = 0.1 H

3. Vout=0.353∠0o, IL = 3.59∠− 90o

4. 2.96 kHz.

5. C1 = C3=707 pF, L2=2 µH

6. C1 = C5=150 pF, L2 = L4=688 nF C3=340 pF

7. C1=2.1 nF L1=13.3 nH

8. 75 Ω.

9. Z=48.2∠50o 50o

10. It = 26.7∠0 Im = 31.8∠− 90o

11. Z = 109∠38.5o, 38.5o.

12. C = 32.3 pF, Z = 140, 0o.

13. A transformer with 22 turns of primary and 44 turns of secondary. H(ω) =
1 at 16 MHz.

14. LS=2.76 µH, C=276 pF. f1=3.77 MHz, f2=6.65 MHz.

15. R1 = R2 = 1120 Ω, Ci = 14 pF.

16. Zin = 40 + j40.

Chapter 7

1. C < 0.23 µF.

3(a). For cos(ωt) >0 ⇒ Vout=0
For cos(ωt) <0 ⇒ Vout=3 cos(ωt)

3(b). For cos(ωt) >0 ⇒ Vout=1.5 cos(ωt)
For cos(ωt) <0 ⇒ Vout=3 cos(ωt)

4(a). For I = Imin=1.2 mA ⇒ Vout=0.41(cosωt+ 1)
For I=0.7 mA ⇒ Vout is half-wave rectified

4(b). For I = Imin=88 µA ⇒ Vout=0.41(cosωt+ 1)
For I=0 mA ⇒ Vout is half-wave rectified

5. |Vout/Vin|=2.38 when IDC=0.1 mA, |Vout/Vin|=9.64 when IDC=10 mA.

6. R=1.27 Ω. Efficiency=62 lumens/W
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Chapter 8

2. H(ω) = jωR3C3/(1− ω2R2
3C

2
3 + 3jωR3C3), ωo = 1/R3C3, |H(ωo)| = 1/3

3. R2/R3 > 2.

4. With 1 V bias: 27.46 MHz, with 10 V bias: 27.80 MHz.

5. L=29.8 µH, r=23.4 kΩ.

6. L=24.8 µH, r=148 Ω.

Chapter 9

1. 0.73 mV

2. 2l=209 cm, Cd=6.66 pF. L=5.22 µH. Q=126.
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L-section, 237

AC, 2
admittance, 87
amateur frequency bands, 294
Ampère, André-Marie, 18
amplifier, 8
amplitude modulation, 7
analysis of first-order RC circuits,

46
analysis of first-order RL circuits,

54
antenna, 284
antenna impedance, 289
Armstrong, Edwin, 275
atmospheric propagation, 293
automatic gain control, 259
available power, 209
average power, 22
average power dissipation, resistor,

30

band-pass-filter, 10
band-pass-filter design, 228
band-pass-filter, OPAMP, 247
band-stop-filter, 248
Barkhausen oscillation criterion,

268
bipolar junction transistor, 152
BJT, 152
BJT circuits, DC analysis, 154
BJT, amall-signal model, 162
BJT, base bias with emitter

resistor, 158
BJT, bias circuit with collectro

feeback, 160
BJT, biasing, 156
BJT, conventional bias circuit, 159

BJT, simple base bias, 157
BJT, states, 153
boostConverter, 172
BPF, 10, 220
Butterworth filter, 224
Butterworth, Stephen, 224

capacitance, 39
capacitor, 39
capacitors in parallel, 43
capacitors in series, 43
charge, 17
Chebyshev filter, 230
Chebyshev, Pafnuty Lvovich, 230
circuit protection device, 58
Colpitts oscillator, 271
Colpitts, Edwin, 271
complex numbers, 77
complex numbers, absolute value,

78
complex numbers, addition, 78
complex numbers, conjugate, 77
complex numbers, division, 78
complex numbers, exponential

form, 79
complex numbers, multiplication,

78
complex numbers, polar form, 79
complex numbers, subtraction, 78
complex numbers, trigonometric

form, 79
condenser microphone, 112
conductance, 87
conservation of charge, 28
conservation of energy, 27
conversion gain, 265
copper loss, 197
coppper loss, proximity effect, 198
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core loss, 197
corner frequency, 110
Coulomb, Charles-Augustin de, 18
critical frequency, 294
crystal filter, 241
crystal microphone, 112
current, 18
current divider, 35
current source, 20
cutoff frequency, 110

dB, 9
dB conversion table, 9
dBm, 9
DC, 2
decade, 111
decibels, 9
demodulation, 255
differentiator, 110
diode, 134
diode rectifier, 140
diode, bridge rectifier, 147
diode, full-wave rectifier, 145
diode, half-wave rectifier, 140
diode, ideal, 134
diode, real, 135
diode, Schottky, 136
diode, water flow analogy of a, 135
diode, zener, 148
dipole antenna, 285
dynamic microphone, 112

earphones, 117
electret microphone, 114
electromagnetic interference, 201
energy stored in an inductor, 52
energy stored, capacitor, 44
energy stored, inductor, 52
energy stored, parallel RLC

circuit, 186
energy stored, series RLC circuit,

190
envelope detector, 255
Euler’s formula, 78

fading, 259
failure to follow distortion, 257
farad, 39
Faraday cage, 233
Faraday, Michael, 39

femto, 8
ferrite bead, 202
first-order circuit, 46
first-order differential equation, 45
first-order RL circuit, 54
free-space wave impedance, 288
frequency, 2
frequency modulation, 8
frequency spectrum, 3
fuse, 60

gain-bandwidth product, 208
Greinacher multiplier, 179
ground node, 36

harmonics, 5
headphones, 117
Heaviside, Oliver, 77, 284
Henry, Joseph, 51
Hertz, Heinrich Rudolf, 2, 284
Hewlett, William, 282
high-pass-filter, 10
high-pass-filter design, 227
HPF, 10, 220
hum, 113
Hz, 2

ideal transformer, 56
image frequency, 276
impedance, 86
inductance, 51
inductor, 50
inductor, air core, 196
inductor, inter-winding

capacitance, 200
inductor, powdered iron core, 196
inductor, quality factor, 199
inductor, RF choke, 201
inductor, self-resonance, 200
inductors in parallel, 52
inductors in series, 52
instantaneous power, 21
instantaneous power dissipation, 30
instrumentation amplifier, 125
integrator, 109
ionosphere, 293

Joule, James Prescott, 22

KCL, 28
Kirchhoff’s current law, 28
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Kirchhoff’s voltage law, 27
Kirchhoff, Gustav Robert, 27
KVL, 27

LED lamp, 152
light-emitting-diode, LED, 151
loudspeaker, 115
low-pass-filter, 10, 221
low-pass-filter design, 225
LPF, 10, 220
LTSpice, 297
LTSpice, AC analysis, 302
LTSpice, BJT analysis, 305
LTSpice, DC analysis, 297
LTSpice, DC sweep, 299
LTSpice, OPAMP analysis, 304
LTSpice, time domain analysis, 300

maximum power transfer, 208
Maxwell, James Clerk, 284
mesh analysis, 36
mho, 87
micro, 8, 29, 42
microphone, 112
milli, 42
mixer, 9
modulating signal, 7
modulation, 7
modulation index, 7
monopole antenna, 290

nano, 51
negative feedback, 106
negative resistance, 269
Newton, Isaac, 144
Newton-Raphson method, 144
nodal analysis, 36
noise, 267
Norton equivalent circuit, 95
Norton, Edward Lawry, 95
notch filter, 248
NTC thermistor, 59

octave, 111
ohm, 18
Ohm’s law, 29
Ohm, Georg Simon, 18
omnidirectional antenna, 288
OPAMP, 104
OPAMP, current source, 108

OPAMP, difference amplifier, 107
OPAMP, differentiator, 109
OPAMP, first-order low-pass-filter,

110
OPAMP, integrator, 109
OPAMP, inverting amplifier, 105
OPAMP, non-inverting amplifier,

106
OPAMP, oscillator, 267
OPAMP, second-order

low-pass-filter, 111
OPAMP, square-wave oscillator,

278
OPAMP, summing amplifier, 106
OPAMP, transimpedance

amplifier, 107
OPAMP, unity gain amplifier, 106
operational amplifiers, 104
oscillator, 4, 266
oscillator, Colpitts, 270
oscillator, phase shift, 279
oscillator, Pierce, 272
oscillator, square wave, 278
oscillator, Wien-bridge, 282
oscilloscope, 20
overvoltage protection, 59

peak-to-peak, 2
period, 2
permeability, 196
permittivity, 39
phase, 2
phasor, 79
phasor, derivative, 81
phasor, integration, 81
pico, 42
Pierce, George W., 272
piezoelectric, 241
PIN diode, 259
positive feedback, 267
power gain, 9
power, phasor relation, 86
proximity effect, 198
PTC thermistor, 58
push-button switch, 61

quality factor, 186
quality factor, capacitor, 193
quality factor, inductor, 199
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quality factor, parallel RLC
circuit, 186

quality factor, series RLC circuit,
191

quartz crystal, 241

radial frequency, ω, 2
radiation resistance, 290
radio-frequency interference, RFI,

201
Raphson, Joseph, 144
reactance, 86
real transformer, 203
relative permeability, 197
relative permittivity, 39
relay, 61
resettable fuse, 58
resistance, 18, 29
resistivity, 18
resistivity of common materials, 19
resistor color codes, 31, 32
resistors in parallel, 34
resistors in series, 33
resonance formula, 184
resonance frequency, 184
RF choke, RFC, 201
ripple, bridge rectifier, 148
ripple, full-wave rectifier, 146
ripple, half-wave rectifier, 142
rms, 23
rms, current, 30
rms, voltage, 30

SAW filter, 245
self-resonance frequency, 82
self-resonance, capacitor, 194
semiconductor, 17
series RLC circuit, 189
shielding, 233
Siemens, 87
Siemens, Ernst Werner von, 87
signal presence indicator, 261
significant figures, 309
skin effect, 197
slide switch, 61
SMD, 32, 42, 51
solutions of diode circuits, 136
spectrum, 6
superconductivity, 17
superheterodyne principle, 12

superheterodyne receiver, 275
superposition principle, 100
susceptance, 87

Tesla, Nikola, 25
Thévenin equivalent circuit, 92
Thévenin, Léon Charles, 93
time constant, 45
toggle switch, 60
transconductance, 103, 115, 270
transducer power gain, 221
transfer function, 89
transfer function, first-order

circuits, 89
transformer, 202
transformer, coupling coefficient,

205
transimpedance, 103
tuned amplifier, 206

unit prefix, 310

varactor diode, 274
varistor, 58
VCO, voltage controlled oscillator,

275
Volta, Alessandro, 18
voltage, 18
voltage clamper, 171
voltage divider, 34
voltage doubler, 171
voltage gain, 9
voltage source, 19
voltmeter, 20

water flow analogy, 18
water flow analogy, LC circuit, 184
water flow analogy, capacitor, 40
water flow analogy, current source,

21
water flow analogy, inductor, 53
water flow analogy, transformer, 57
water flow analogy, voltage source,

20
water flow analogy, zener diode,

150
watt, 22
Watt, James, 22
wavelength, 3
Wien, Max, 282
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Wien-bridge oscillator, 282 zener diode, 148
Zener, Clarence Melvin, 148


